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Finiteness and Cubulative Properties of Algebraic Bieri-Strebel Groups

by Lewis MOLYNEUX

Thompson Groups are of perennial interest in the field of Geometric Group Theory,
producing unique and elegant results in many areas of study. These properties of-
ten extend to the much larger class of Bieri-Strebel groups. In particular, finiteness
properties are a point of interest among all Thompson-Like groups.

This thesis will examine finiteness properties among multiple different classes of
Bieri-Strebel groups, starting from the more basic finiteness properties such as F,
and proceeding to more complex finiteness properties such as the BNSR invariant.
We will employ primarily geometric methods, including Bestvina-Brady Morse The-
ory, to calculate these properties in general for large classes of groups, as well as im-
plementing a new technique (initially published in [MINSR24]) in order to link the
BNSR invariant of a group with that of certain finite-index subgroups. We will also
use these geometric techniques to demonstrate a class of Bieri-Strebel groups can act
geometrically on a CAT(0) cube complex.
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Chapter 1

Finiteness Properties

Finiteness properties are a core concept in geometric group theory. Although it is
possible to define many different kinds of finiteness property, many of them fit into
one of two different categories: homotopical finiteness conditions, and homological
finiteness conditions. We shall concern ourselves with both types. Initially we shall
discuss a common example from each type: The homotopical finiteness condition
F,, and the homological finiteness condition FP,,.

1.1 F,

Definition 1.1.1. A CW-complex X is a topological space constructed according to
the following process ([Hat02], page 5):

* Begin with a discrete set X9 The elements of X? are the 0-cells of the complex.

e We form the n-skeleton X" from the n — 1-skeleton X"~! and a collection of
n-disks D! with attaching maps ¢, : S'! — X"~! as the quotient space
X"1, D" with the boundary §D” of D! identified with ¢, (SD”) pointwise
(each point x € D" is identified with ¢, (x) € X"~ 1).

¢ If we terminate this process at some finite value n, then X = X", otherwise
X=U,X"

Definition 1.1.2. For a group G, a G-CW-Complex is a CW-complex X with a G-
action such that each ¢ € G when considered as the homeomorphism ¢ : X — X,
then g is an automorphism of X. That is to say for each k-cell x € X*, ¢(x) is also
a k-cell. This means that the action of G on X preserves the cell structure. ([Geo08],
page 84).

Definition 1.1.3. For a group G, an Eilenberg-Maclane Space, classifying space, or
K(G,1), is a topological space where the first homotopy group is isomorphic to G
and all other homotopy groups are trivial ([Hat02], 1.B).

It is worth noting that a K(G, 1) is not unique to a group. A group may have many
distinct classifying spaces. However, all of these spaces will be the same up to ho-
motopy. We will also need to consider the universal cover of a K(G, 1), referred to
as an EG.

Definition 1.1.4. A group G has the homotopical finiteness property F, if there exists
a K(G, 1) X such that X has a finite n-skeleton. That is to say, a finite number of cells
of dimension 7 or lower. The space may have infinitely many cells of dimension
higher than n. We say a group has the property F, if it has F, for all n, and we say it
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has the property F if it has a K(G, 1) with a finite number of cells in any dimension.
[Wal65]

F, is a generalisation of some very intuitive properties to discuss regarding infinite
groups. A group having the F; property is equivalent to the group being finitely
generated, and F, is equivalent to being finitely presented. There exist groups of
type F, but not type F, for all n, as well as groups that are of type F., but not type
F

1.2 FP,

Definition 1.2.1. An exact sequence is a sequence of modules Mj over a ring R and
homomorphisms J; : My — Mj_1 such that the image of &, in M_; is the kernel of
O—1.

Definition 1.2.2. A projective resolution of a module M is an exact sequence

e > Pk =P 1 —>... P —>P—>M—=0

such that each P is a projective module. [10; Bro82]

Definition 1.2.3. A module A has the homological finiteness property FP, over a
ring R if there exists a projective resolution of A of the form

wio—wP,—-P, 1 —>..>P—>P—-Ph—>R—0

where Py are finitely generated projective R modules, for k < n.

A group G has the homological finiteness property FP,(R) if R is of type FP, over
the group ring RG. A group G has the property FP(R) if it has FP,(R) for all n,
which is to say it has a projective resolution with the modules P; finitely generated
and projective for all i, and it has the FP(R) property if there exists a projective
resolution of the form

0O—-P,—-P,1—..>P—>P—>RG—-R—0

where Py are finitely generated projective RG modules, for k < n.

For purposes of brevity, this thesis will use FP,, FP., and FP as shorthand for
FP,(Z), FPw(Z), and FP(Z). Similarly to F,, there exist groups of type FP, but
FP,1 for all n, as well as groups that are of type FP., but not type FP. For example,
Bestvina and Brady ([Bes],example 6.3) constructed a group that is FP, but not FP,, 1
from the kernel of a homomorphism from certain right angled artin groups G to the
ring of integers Z. Furthermore, Thompson’s group (defined in 2.1.1) was shown by
Brown and Geoghegan to be FP,, but not FP [BG84]

The finiteness properties F, and FP, are closely related. F, implies FP, for all n, with
Fe and F implying FP., and FP respectively. This is all implied by the fact that we
can create a projective resolution for a group G over Z based on an EG for G. If
this EG has a finite number of orbits of k — cells (equivalent to the associated K(G, 1)
having a finite number of k-cells), then the module Py in the projective resolution will
be finitely generated. Thus, if a group G has the property F,, then we can generate
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a projective resolution with the first # modules finitely generated, and so the group
also has the property FP,.

This implication does not generally work in reverse. The exception is that FP; im-
plies F; ([Bro87], page 197). Otherwise, FP, does not imply F,. In fact, forany n = 2,
there exist groups of type FP, but not F, [Bes]. However, we do know that F, and
FP, implies F,.

1.3 BNSR Invariants

Alongside finiteness properties such as F, and FP,, we can construct more complex
properties that, alongside being group invariants for the purposes of distinguishing
different groups, provide more information about group structure. This thesis is
particularly interested in the BNSR invariant, or sigma (X) invariant.

Definition 1.3.1. The character sphere of a group G, written S(G) or occasionally
¥%(G), is the space Hom(G;R)/ ~ of homomorphisms from G to the additive group
of real numbers R, modulo the equivalence relation where, for a4,b € Hom(G;R),
a ~ b if there exists a positive real number r such that a(g) = r*b(g) forall g € G.
([BS92], Chapter 1).

For a group G, the space Hom(G;R) is isomorphic to R", where n is the number of
free generators in the abelianization Gg;,. This is also known as the torsion-free rank
of Gup, or r9(Gyp ([BS92], lemma 1.1). Each equivalence class of ~ can be imagined
as a ray from the origin to a point at infinity. As such, the quotient space is created
by selecting a point from each of these rays, creating a sphere centred at the origin.

1.3.1 Homotopical BNSR Invariants

Definition 1.3.2. For a group G with generating set S, the Cayley graph I'(G, S) is the
graph with vertex set V(I') = G and edge set E(T) := {g,¢' € G|3s € ST st¢’ = gs}
[Loh17].

To define the homotopical BSNR invariant, we start by constructing a labelled Cay-
ley graph, I'y, by selecting a representative character x from one of the equivalence
relations in our character sphere. As every vertex in I' is a group element, we can la-
bel each vertex ¢ with the value x(g). From here, we will form the "top half" labelled
Cayley graph I'y>¢ by taking the induced subgraph of I' that includes only vertices
with a label greater than or equal to 0.

Definition 1.3.3. The first homotopical BNSR invariant of a finitely generated group
G is defined as the following[BS92]

1(G) := {[x] € S(G)|Ty>0 is connected}

We can see that the choice of representative character for a given equivalence class is
arbitrary for the purposes of calculating the BNSR invariant. Indeed, as characters
in each equivalence class are the same up to multiplication of a positive real num-
ber, there can be no element of G that is mapped to a positive number by x and a
nonpositive number by x’, assuming x ~ x’, and vice-versa.
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The first BNSR invariant can be generalised in a similar way to how finitely gen-
erated can be generalised into F,. However, this will require a higher dimensional
space than the Cayley graph to calculate.

Definition 1.3.4. For a group G, a contractible CW-complex X is an EG if G has
a free, cocompact action on X via deck transformations. That is to say, G acts on
X by homeomorphisms that map k-cells to k-cells and if it fixes any cell, it fixes it
pointwise.

It is possible to construct an EG for a group G by taking a K(G, 1) for G and finding
the universal cover. Similarly, one can reach a K(G,1) from an EG by quotienting
the space by the specified G action.

While the restriction that the action be cocompact isn’t strictly necessary for our
purposes, it is typical in situations where one is exploring similar properties in both
homotopy and homology, as requiring the action to be cocompact results in possible
models for EG being restricted to "simpler" models, in the sense that they have fewer
cells. Thus, were we to then wish to analyse the homology of this space, it would be
simpler to work with.

In order to calculate higher order BNSR invariants. We will need to create a "top
half" of our EG X in a similar manner to the "top half' Cayley graph we created
before. This is not as straightforward as when working with the Cayley graph, as
a Cayley graph has the group G as a vertex set, while an EG does not necessarily
have that property. Instead, we establish the "height" of each vertex by choosing a
height function / : X(©) — TR that is equivariant with our character y. That is to say
that, given the group action G x X — X, we must have that h(g - x) = h(x) + x(g)-
Outside of this stipulation, our choice of & is arbitrary, as shown in [BS92]. We can
then form the "top half" of X by first defining the 0-skeleton as

xg, = {x € XOn(x) > r}

We then define the k-skeleta iteratively as

(k) ._ k (k=1
X )r := {x € X®Jall faces of x are in X>, '}

>

Definition 1.3.5. For an F, group G, the n-th BNSR invariant is [BS92]

Y'(G) :={[x] € S(G)|3 EG X and x-equivariant height function & st X>, is n-connected }

We consider [x] to be in 2°(G) if [x] € £"(G) for all n .

This initial definition can be difficult to work with, especially when attempting to
show a character is not in the Sigma invariant. However, by slightly softening the
requirement for the "top-half" to be n-connected, we can create a condition that ap-
plies to all EG for a given group G.

Definition 1.3.6. ([Ren88], Kapitel II, Definition 3.6). For X}, as described above,
we say that X}, is essentially n-connected for n € Z~_; if there is a real number
d such that the map between the j-th homotopy groups i; : 7;(Xp>,) — 7T;(Xp>r—a)
induced by the inclusion map i : Xj,>, — Xj>,—g4 is the zero map for all j < k.
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Put another way, an essentially connected filtration of a space may have homotopy,
but if the filtration is extended by a finite amount, that homotopy vanishes. This is
useful for calculating the BNSR invariant for the following reason.

Citation 1.3.7. ([Ren88], Kapitel 1V, Satz 3.4). Let G be a group of type F,, and let X be
a model for EG with G-finite n-skeleton. Let x : G — IR be a nontrivial character and
h: X — R be a height function equivariant with x. Then

(Xl € Z"(G) <= Xy, is essentially n-connected

This replaces the condition in 1.3.5 with a condition that can be applied to any EG,
in particular allowing us to use an EG that has a not essentially connected filtration
as proof that [x] € £"(G).

1.3.2 Homological BNSR Invariants

Analagous to the difference between F, and FP,(R), we can define a homological
BNSR invariant using the projective resolution. As the character x is a map from G
to R, we can easily define G, := {g € G|x(g) > 0}. We can extend this concept to
the group ring ZG, creating the subring ZG,,.

Definition 1.3.8. For an FP, group G and a ZG module A, the n-th homological
BNSR invariant is defined as follows [BR88]

2'(G; A) :={[x] € S(G)|A is of type FP, over the ring ZG,}

We say that [x] is in 2°(G; A) if itis in £"(G; A) for all n.

We may relate the homotopical and homological BNSR invariants (and in particular
the homological BNSR invariant over the ring of integers Z) in the following way:

*1(G) =21(G;Z)
Y'(G) =Z*(G) N (G, Z)Vn > 2
Alongside being a group invariant, the homological and homotopical BNSR invari-

ants share a powerful property for calculating the finiteness properties of certain
subgroups.

Lemma 1.3.9. For an F, group G with G' < H < G the following are equivalent [BS92]:
* H has the finiteness property Fy.
e Forall x € Hom(G,R) such that H € ker(x), [x] € Z¥(G).

Analogously for the homological invariant: For an FP,(R) group G with G/G' < H < G
the following are equivalent:

* H has the finiteness property FP(R).
e Forall x € Hom(G,R) such that H € ker(x), [x] € Z¥(G; R).

This result is not only powerful as a tool for understanding the finiteness proper-
ties of various subgroups of a given group, but can also be used to calculate the
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BNSR invariant of a group if the finiteness properties of certain subgroups are al-
ready known.

1.4 BNSR invariants and Finite Index

The following is the result of collaborative work between Lewis Molyneux, Brita Nucinkis,
and Yuri Santos Rego. Work contributed in its entirety by the other authors will be labelled

In discussions of BNSR invariants of Bieri-Strebel groups, it has proven useful to be
able to derive knowledge of the BNSR invariant of a group from knowledge of the
invariant of a finite index subgroup. Unfortunately, such a connection is nontrivial.
For example, the group

Deo := (x,yx* = y* = 1)

has Z as an index 2 subgroup (generated by the element xy). However, D, has a fi-
nite abelianization and therefore only the trivial character (sending all elements to 0),
while Z has two nontrivial equivalence classes of characters in its character sphere.
As such, we can see that finite index alone does not provide a simple correspon-
dence between characters for a group and a subgroup. There are further restrictions
we can introduce to create such a correspondence.

Theorem 1.4.1. Let G be a group of type F,, H C Gand |G : H| < oo. Leti: H — G
be the inclusion map. If ro(Gup) = ro(Hyp), then i* : S(G) — S(H) is a well defined
homeomorphism and for all n we have that i* (X"(G)) = X" (H).

Theorem 1.4.2. Let A be a ZG module of type FP,, H C G and |G : H| < co. Let
i1 H — G be the inclusion map. If ro(Ggup) = ro(Hyp), then i* : S(G) — S(H) is a well
defined homeomorphism and for all n we have that i* (X" (G; A)) = X" (H; A).

These two theorems were originally published in [MNSR24]. All work towards these theo-
rems by the author was undertaken during the PhD course as part of the research towards
the PhD.

The proof of these two theorems comprises two main parts: The proof that finite in-
dex and equivalence of torsion-free rank is sufficient for i* to be a well defined home-
omorphism, and the proof that finite index and equivalence of torsion-free rank is
sufficient for i*(X"(G)) = Z"(H).

Lemma 1.4.3. Suppose G is a finitely generated group, let H C G, and write 7 : G — Gy
for the canonical projection and i : H — G for the inclusion. The following hold:

e If |G : H| < oo then the map i* : Hom(G;R) — Hom(H;R) induced by the
inclusion i is injective.

e Iftheimage rt(H) is infinite, then there exists a nontrivial morphisme : Hom(H;R) —
Hom(G;R). That is to say, any character  of H C G corresponds to a character e(1p)
of G and the image e(Hom(H;R)) in Hom(G;R) is a nonzero subspace.

Part 2 of this lemma was originally observed by Kochloukova and Vidussi [KV23].
However, their proof assumes that the characters in G are extensions of characters
from a subgroup H. This lemma makes no such assumption, and allows for e(y) to
not be a valid extension of . As such, it might be the case that i*e(¢) # .
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Proof. Part 1: Suppose for contradiction that i* is not injective. Therefore there exists
a nonzero character x € Hom(G;R) such that i*(x) = xjg = 0. As x is nonzero,
there must exist ¢ € G such that x(g) # 0, but as x(H) = 0, we can see that ¢ ¢ H.
Furthermore, we can conclude that g" ¢ H foralln € IN, as

§"€H = x(g")
— nx(g)
— x(8)

Il
o o o

which would contradict our assumption that x(g) # 0. We can go on to say that
¢ £ glforalli<jeNasg =¢¢ = ¢"=1 = ¢! € H whichisa
contradiction. As such, each ¢" is a distinct coset of H, so H cannot be finite index,
contradicting our assumption. Hence, i* must be injective.

The following proof was developed by Yuri Santos Rego as part of collaborative work on
[MNSR24]

Part 2: Consider the finite dimensional Q-vector space V = G;, ®z Q. Since the
image 71(H) C Gy, is infinite, the set 71(H) must contain some torsion-free element
and thus 71(H) ®z Q contains a partial basis for V. Label this partial basis B’ =
{h1,....hm}, where each h; is the image in G, of some h; in H. From this partial
basis we construct a full basis of V as B = {hy, ..., iy, §ms1, -, §r}, with gj being the
image of some g; € G. Since the image of characters of a group factors through the
abelianization, we may define

e(9)(g) == iaap(hi)

where the a, with x € B are the co-ordinates of the image of G in V using the basis B.
e is thus a homomorphism from Hom(H;R) to Hom(G;R) and because (H) C G
is infinite and G is finitely generated, the induced map H — m(H) ®z R = R"
gives a nontrivial character, labelled ¢ € Hom(H,R), by projecting onto the line
spanned by a nonzero vector of 7(H) ®z R. By construction, the character e(y) is
also nontrivial. O

We can now proceed to the first major part of theorems 1.4.1 and 1.4.2, that is the
connection between S(G) and S(H) when |G : H| < co0 and G, and H,;, have the
same torsion-free rank.

Proposition 1.4.4. Let G be a finitely generated group with H C G and |G : H| < co. The
following are equivalent:

b rO(Gub) = ro(Ha )

e i*: Hom(G;R) — Hom(H;R) is an isomorphism of vector spaces.

* The assignment i*([x]) := [x|n] is defined on all character classes [x] € S(G), and
the corresponding map i* : S(G) — S(H) is a homeomorphism.

e Every character  in Hom(H;R) admits a lift ' in Hom(G;R) such that 1/J|’H =9
andp #0 <= ¢’ #0.

Proof. The equivalence of (1), (2) and (3) are consequences of 1.4.3 part 1 and of the
fact that dimg (Hom(I;R)) = ro(T') for any group I'. As we have |G : H| < oo we
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know i* is a monomorphism by 1.4.3. As such, all we need is for i* to be surjective,
but as i* is injective, we know dimg (Im(i*)) = ro(Ggp), and as ro(Gup) = ro(Hgp),
Im(i*) must cover all dimensions of Hom(H;R) and thus i* is an isomorphism.
i* : S(G) — S(H) is a homeomorphism as a consequence of i* : Hom(G;R) —

Hom(H;R) being an isomorphism.

From here, we can connect (4) to (2) by observing that the function e : Hom(H; R) —
Hom(G;R) given by e(¢) = ¢’ (as described in the proof of 1.4.3 part 2) is a right
inverse of i*. O

Example 1.4.5. The extension map e : Hom(H;R) — Hom(H, R) mentioned in the
proof of 1.4.4 can be explicitly constructed. Let {x1, ..., x,, } be a generating set for G
and say r0(Gup) = ro(Hy) = k < n. Without loss of generality we may assume a
subset of abelianized generators {7, ..., ¥ } generates (Ggp)o, the torsion free part of
Ggp- Since |G : H| < oo, foreachi € {1, ..., n} there exists &; € N such that x;' € H (If
this were not the case, then x}' H would be an infinite set of cosets of H, contradicting
finite index). Using the fact that each X; has infinite order in G,;, we can conclude
that 0 # a;%; € (Hyp)o foralli = 1,..., k. Let @ = lem{ay, ..., ax}. Given a character
¢ : H — R, we define the lifte(y) = ¢’ : G — R by:

' (x;) = %lp(xf‘) forallie {1,..,n}

This is well defined for all x; as xf‘i € H, and as we have defined the character on the
generators of G, it naturally extends to all elements of G.

The second stage of the proof is to demonstrate the connection between £"(G) and
Y"(H). In principle, we wish to show that [x] € Sigma"(G) <= [xu] € Z"(H),
and [y] € ¥"(H) <= [¢'] € £"(G). As discussed in 1.3.1 and 1.3.2, these in-
variants are defined through topological spaces and projective resolutions. What we
shall demonstrate is that, given a space or resolution suitable for calculating X" (G)
or X"(G; A) respectively, we can construct a suitable space or resolution for calculat-
ing ¥"(H) or X"*(H; A), and vice-versa.

To finish the proof of 1.4.2, we can cite a result from Meier, Meinert and VanWyk.

Citation 1.4.6. ([MMYV98], Proposition 9.3) Suppose that we have H C G such that |G :
H| < oo and A is a ZG module of type FP,. Further suppose that x : G — R restricts to a
nonzero homomorphism of H. Then

(Xu] € Z"(H;A) < [x] € £"(G;A)

Proof of Theorem 1.4.2. 1.4.4 demonstrates that, for a group G with finite index sub-
group H such that ro(G,,) = ro(Hyp), any character class [x] € S(G) has a nontrivial
restriction [xy] € S(H), and any character ¢ € S(H) has a suitable lift ¢ € S(G).
1.4.6 shows that, as long as the restrictions and lifts exist, then they are in the same
invariants. The theorem is thus an immediate consequence of these two results. [

To prove 1.4.1, we can use the nature of an EG as a space that is acted upon co-
compactly by a group G to use the same space as an EH for a finite index subgroup
H.



1.4. BNSR invariants and Finite Index 9

Proposition 1.4.7. Let G be a group of type F, with H C G such that |G : H| < oo and
10(G) = ro(H). The following holds

(Xl € 2(G) = [xu) € Z"(H)
[yl e X"(H) — [¢] € 2"(G)
where §' is the lift of the character € Hom(H;R) to Hom(G;R) as described in 1.4.4.

Proof. Starting with the first implication, consider a model X for EG with G-finite
n-skeleton (as G is Fy, this must exist). Now suppose [x]| € £"(G). From the defini-
tion of the BNSR-invariant, we know that Xj, > is essentially n-connected for some
height function £, that is equivariant with x. Since H is finite index in G, X is also a
model for EH with finite H-skeleton, and h, = hx‘ 44s SO th‘HZO is the same as X}, >0,

and is therefore essentially n-connected. Hence [x|y] € X"(H). We now assume
[p] € Z"(H). We choose a model X for EH such that X is a simplicial complex
with G-finite n-skeleton and one G-orbit of zero cells that we may label with ele-
ments of G. As |G : H| < oo, we know such a model must exist. We now fix a set
T = to,...,tm—1 of coset representatives of H in G, such that ty = 1, and construct a
y-equivariant height function iy : X — R on the vertices of X as follows. For any
v € Hweset hy(y) = ¢(v), and for each t; € T we set hy(t;) = 0. As the cosets of
H partition G, we may write any element of G uniquely as ¢ = t;y. When using the
height function, we therefore get

hy(8) = hy(t:) +hy(7) = $(7)

We then extend this function piecewise linearly to the entire n-skeleton on X. As
we have [¢] € X"(H) by assumption, we know by 1.3.7 that Xj>, is essentially
n-connected. The final step is to show that this connectivity is preserved when
changing to a height function 1y corresponding to ¢, the lift of ¢ inside Hom (G; R).
The complicating factor being that ¢’(#;) is not necessarily equal to 0. We will take
d = min{y’(t;)}. Note that, as tp = 1, d < 0. We claim that, for every ¢ € G,
hy(g) > 01if and only if ¢'(g) > d. To demonstrate this, we write ¢ = ;v as above,

since y(g) = ¥(7) and ¥'(g) = ' (tiy) = ¥'(t:) + ¢ (7), we get

hy(8) 20 <= (1) 20 <= ¢'(t) +¢(y) 2d+0 = ¢'(g) >d

This implies that the 0-skeleton of Xj, >0 is precisely the same as the 0-skeleton of
Xh¢,2d~ From the definition of the "top half" given in 1.3.1, we can see that XhU/,Z,j

must be essentially n-connected, and by 1.3.7, [¢/] € Z"(G). O
Proof of Theorem 1.4.1. Similarly to the proof of 1.4.2, 1.4.4 guarantees the existence of

character lifts and restrictions between S(G) and S(H), and 1.4.7 demonstrates that,
for corresponding characters x € S(G) and x|y € S(H)

(X1 € 2*(G) < [xu] € Z"(H)

And that the same holds for ¢ € S(H) and its lift ' € S(G). The theorem is therefore
a consequence of both these results. O
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Chapter 2

Bieri-Strebel Groups

Bieri-Strebel groups emerge as a natural generalisation of Thompson’s group and the
related Brown-Thompson groups. Many properties are shared between Thompson’s
group and Bieri-Strebel groups and yet more properties of Bieri-Strebel groups are
defined by how they differ from Thompson’s group. With this in mind, we will
define and discuss Thompson’s group in order to discuss Bieri-Strebel groups in
comparison.

2.1 Thompson’s Group
Definition 2.1.1. Thompson’s group F is the group of piecewise-linear, orientation-
preserving homeomorphisms of the unit interval [0, 1] (denoted I) such that:

e All gradients are in the multiplicative group (2).

* There are finitely many breakpoints separating the linear piece.

e All breakpoints fall in I N Z[1].

Thompson’s group T and Thompson’s group V are related groups that are defined
over the unit circle and the cantor set respectively. They are not used in this thesis,
but an interested reader can learn more in [CFP96]

Thompson’s groups have many unique properties. V was the first known finitely
presented infinite simple group, and F has a simple, not finitely generated commu-
tator subgroup. F is most commonly written with the following presentation [Bur]

F = <X(), X1,...‘ijl' = XiXjy1 for all i < ]> (2.1)

F has the F., property and is therefore finitely presented, but the finite presentation
is cumbersome and not often used in results. It can be seen in [Bur].

An element of Thompson’s group F can be considered as a function mapping the in-
terval I onto itself. As they are orientation preserving homeomorphisms, they must
always map 0 to 0 and 1 to 1, and all slopes must be positive. Considering Thomp-
son group elements in this manner can lead to interesting dynamical properties that
can be derived through analysing these functions. See, for example [HM23].

21.1 Tree-Pair Diagrams

A frequently useful property of Thompson’s group F (and many other Thompson-
like groups) is the ability to express elements of the group as diagrams consisting
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of an ordered pair of rooted binary trees. This property can be derived from the
expression of elements as functions on the interval.

Definition 2.1.2. ([CFP96], section 2). A partition of the interval I is a set {xo, ..., X, }
such that

O=x<x1<..<xy, <x,=1

Each interval [x;, x;;1] is an interval of the partition, and a partition is dyadic if x; €
INZ[3] forall 0 < i < n. A dyadic partition is standard if each interval may be

written in the form [£, 2] witha < 27 —1

It is easy to see that an element of f may be uniquely defined by its breakpoints, as
the function must be piecewise linear, so the parts of the function between break-
points is merely a set of linear gradients that connect consecutive breakpoints. Fur-
thermore, each breakpoint is a pair of dyadic numbers, so we may express a set of
breakpoints as an ordered pair dyadic partitions, each containing the same number
of intervals.

If we wished to express an element of F visually using this breakpoint form, we
could draw the two partitions of the interval, with breakpoints marked, and then
indicate which interval in the domain is mapped to each interval in the codomain, as
in 2.1. Note that, when working in F, indicating where each interval is mapped is not
strictly necessary. As the function is an orientation preserving homeomorphism of I,
we know that 0 must be mapped to 0, 1 must be mapped to 1, and that the function
must be continuous. From this alone, we may conclude that the first interval of
the domain must be mapped to the first interval in the codomain, the second to the
second, and so on.

! (1,1)

—
N—
~
WG
N—"
(e}
-1 =
-T- NI=

W=
~

N[—=

~—

[
0 1 0

N— —=
Wl -

FIGURE 2.1: The same element of F, expressed as both a function
f 1 — I and as a pair of partitions.

We may derive the tree-pair representation of an element from its partition repre-
sentation by first rewriting the partitions as standard dyadic partitions. This may
introduce redundant breakpoints, that is to say breakpoints that have slopes of the
same gradient of either side, but this does not change the function in any way and
we may always find an ordered pair of standard dyadic partitions for each element
of F ([CFP96], lemma 2.2). We may then express a standard dyadic partition as a
rooted binary tree in the following way:



2.1. Thompson’s Group 13

¢ Each node of the tree represents a standard dyadic interval.
¢ The root node represents the interval I.

¢ For a node with corresponding interval [%, ‘lzibl], the two nodes directly be-

neath it represent [%—Z, 22‘},111] (on the left) and [Zzﬁll, ”Zi,,l] (on the right).

In order for the structure of the tree to be meaningful, which is to say that a caret
has a consistent meaning across the tree, and the depth of a leaf to correspond to
the length of the interval it represents in the interval partition, the types of interval
divides must be consistent. When we talk about tree pairs for more generalised
Thompson groups in 2.3.2, we will introduce more flexibility. For now, we require
that each caret represent the same division of an interval into two equal parts.

As any element of F can be represented as an ordered pair of standard dyadic par-
titions of I, and each partition can be represented as a rooted binary tree, we can
represent any element of F as an ordered pair of rooted binary trees

0.5 [i3] 23 3]

FIGURE 2.2: The element from 2.1, now presented as a tree-pair. Note
how the nodes in the trees are positioned similarly to the breakpoints
in the partitions.

W

Just as we have that the domain and codomain partitions must have an equal num-
ber of intervals, we require that each tree in a tree-pair diagram have the same num-
ber of end points (or leaves).

2.1.2 Redundant Carets

An important thing to note is that, while an element of F can be represented with
a tree-pair diagram, this representation is not unique. Indeed, there are an infinite
number of tree-pairs that represent each element of F. This may be observed in
partition pairs as well. As mentioned in 2.1.1, when constructing a partition pair, we
may introduce a redundant breakpoint by bisecting an interval in the domain and
the interval it is mapped to in the codomain. Introducing this breakpoint creates
two new intervals in both the domain and the codomain, each half the length of the
interval that spawned it. As such, the gradient of the function is unchanged. Were
we to place such a breakpoint on the graph of the function, we would see it as a
point with the same gradient either side.

When we refer to a caret while discussing tree-pair diagrams, we refer to a subgraph
consisting of one parent node, its direct descendants, and the edges connecting them.
Carets are the building blocks of our tree-pairs, as each one represents a breakpoint
in the corresponding partition. Just as we may introduce a redundant breakpoint by
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bisecting an interval in the domain and the corresponding interval in the codomain,
so too may we create a redundant caret by adding a caret to one of the leaves of the
domain tree, and to its corresponding leaf in the codomain. When presented with a
tree-pair diagram, we may detect redundant carets on the lowest level of the trees in
the following way:

¢ Number each leaf on the domain tree from left to right, and repeat on the
codomain tree.

e If a caret in the domain tree has the same numbered leaves as a caret from the
codomain tree, then those carets form a pair of redundant carets.

We shall refer to a tree-pair diagram with no redundant carets as a reduced diagram.
We may consider an equivalence class on the set of tree-pair diagrams where two
diagrams are considered equal if it is possible to construct one diagram from the
other via the addition and removal of redundant carets. We can then consider the
set of equivalence classes of tree pairs, modulo this equivalence relation.

YR

FIGURE 2.3: A tree-pair diagram with a redundant caret, highlighted
in red, and the equivalent reduced diagram.

Lemma 2.1.3. ([Burl, proposition 1.2.5). There is precisely one reduced diagram within
each equivalence class of tree-pair diagrams.

Proof. This proof is split into two parts: proving the existence of at least one reduced
diagram in each equivalence class, and proving the uniqueness of that reduced dia-
gram.

Existence: For each equivalence class, take an arbitrary diagram contained within.
If the diagram is reduced, then we are done. Otherwise, it must contain at least one
pair of redundant carets. We remove all redundant carets and check again. Repeat-
ing this process will result in a reduced diagram for each equivalence class.

Uniqueness: Suppose there exists 2 distinct reduced diagrams A, B. As A and B are
distinct, they must have different carets, and as they are both reduced, these different
carets must be non-redundant. As such, to transform A into B or vice versa would
require the addition or removal of non-redundant carets, which means that A and B
cannot be in the same equivalence class. ]
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With each equivalence class containing exactly one reduced diagram, each distinct
reduced diagram representing a distinct element of F, and each element of F be-
ing representable as a tree-pair diagram, we can conclude that the set of equiva-
lence classes of tree-pair diagrams is precisely the set of elements of F. Pushing this
concept to its natural conclusion, we can also define a composition of equivalence
classes of tree pair diagrams that corresponds precisely with the binary operation
of function composition in F, allowing the group of equivalence classes of tree-pair
diagrams to be precisely the same group as F.

Definition 2.1.4. ([Bur], section 1.3) Composition of equivalence classes of tree-pair
diagrams is performed in the following way:

¢ Take the reduced representatives of each equivalence class.

¢ Add redundant carets to each tree-pair until the codomain tree of the first tree
pair is identical to the domain tree of the second tree pair.

¢ The product of the composition is the equivalence class containing the tree pair
with the domain tree of the first tree pair as its domain tree and the codomain
tree of the second tree pair as its codomain tree.

EOA
{840
A

fxf

FIGURE 2.4: Demonstration of composition of tree-pairs.
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It is important to highlight that it is always possible to add redundant carets to make
the middle two trees identical in step 2. As shown in ([Bur], Lemma 1.3.1), super-
imposing any two trees will create a tree that can be constructed from either with
the addition of redundant carets, and the addition of redundant carets can be done
to any tree-pair an arbitrary number of times without leaving the equivalence class.
As such, the method of tree-pair composition described in 2.1.4 is possible with any
two elements of F.

Being able to consider F as the group of equivalence classes of tree pair diagrams
as well as the group of homeomorphisms is a powerful tool. Tree-pair diagrams are
the basis for a construction of the infinite presentation of F ([Bur], Thm 2.1.1) and, as
will be seen in 2.2, are useful in the construction of geometric spaces upon which the
group can act.

213 F,.

While there are many possible ways to generalise Thompson’s group F, one that
provides a useful middle ground between Thompson’s group and the Bieri-Strebel
groups is the family of Brown-Thompson groups F,,. Many concepts from Brown-
Thompson groups will carry over to Algebraic Bieri-Strebel groups and many of
the concepts we have discussed and shall discuss for F carry over to the F,, groups.
It is therefore prudent to define and discuss the Brown-Thompson groups before
proceeding to the Bieri-Strebel Groups.

Definition 2.1.5. For n € IN,n > 2, the Higman-Thompson group F,, is the group of
piecewise-linear, orientation preserving homeomorphisms of the unit interval [0, 1]
(commonly written as I) such that:

e All gradients are in (n).
¢ There are finitely many breakpoints between the slopes.
o All breakpoints fall in I N Z[1].

as with F, we can define related groups T, and V,, over the unit circle and the cantor
set.

Evidently, the Brown-Thompson groups are a natural generalisation of Thompson’s
group. It can be seen that Thompson’s group F is the same as the Brown-Thompson
group F,. The Brown-Thompson groups have a similar presentation to F.

F, = <X0, X1y eeer |x]-xi = XiXjyn—1 for ] > Z> (2.2)

Similar to F, the Brown-Thompson groups F,, can be represented with both partition
pairs and tree-pair diagrams. The primary difference between tree-pairs represent-
ing different Brown-Thompson groups is the shape of the carets. In F, each time we
subdivide an interval, we split it into 2 equal pieces. This concept generalises to F,,
where we subdivide each interval into N equal pieces. This means that, in the tree
pair diagrams for F,,, each caret has # legs. That is to say that each node either has 0
direct descendants (and is therefore a leaf), or n direct descendants.

Other than this difference, tree-pairs function identically in F,, to how they function
in F. Redundant carets may be detected in the same way. We still form the same
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equivalence classes of tree-pairs, and tree-pair composition functions in the exact
same way. As such, many properties for F derived from tree-pair diagrams can be
analogised to F,,, even if those properties are not the same. The presentation in 2.2
is a good example of this, as it is similar to the presentation for F, but changes as n
changes.

2.1.4 Characters for F,

In 5, we will calculate the BNSR invariant for a set of generalised Thompson groups.
As mentioned in 1.3, this will require us to know the characters of those groups.
These will also be calculated in Chapter 5. To provide the necessary context for
those calculations, we will discuss the characters of F and F,, here.

As discussed in 1.3.1, the size of the character sphere, and thus the number of char-
acters we need to find, is dependant on the abelianization of the group in question.
Thus, our first goal is to calculate the abelianization of F.

Lemma 2.1.6. ([BGK10], section 1.4) The abelianization F,, is isomorphic to Z>.

Proof. Taking the abelianization of the group with the presentation 2.1, we can use
the infinite family of relations to conclude the following for j > 1 (using addition
notation for composition in the abelianization):

Xji+%=%+Xin
Xj=X; — X —l—m (2.3)
Xj = Xj41

Via a simple induction, we can therefore see that X; = ¥ for all j,k > 1. This means
that F;; has two free generators, ¥y and ¥7, and no torsion generators, meaning it
must be isomorphic to 72 O

We now know that ro(F) = 2, and so we would expect there to be two linearly
independent characters in IF. To determine what these characters are, we can cite
Bieri and Strebel.

Citation 2.1.7. ([BS92], Chapter IV, section 3). For G a group of piecewise-linear home-
omorphisms of the interval, the character xo, the gradient of the slope around the point 0,
and the character X1, the gradient of the slope around the point 1, will always be linearly
independent characters in Hom(G, R).

When working with these two characters, we will use log,(x) for the group F,,
as this allows the characters to be additive under group composition, rather than
multiplicative. As ro(F) = 2, these two characters must generate the entirety of
Hom(F,R).

Moving on to F,;, we can use a similar technique to 5.1.1 to conclude the following:

Citation 2.1.8. ([Zar17], Section 3.2) The abelianization of F, is isomorphic to Z", and as
such ro(Fy) = n.

From 2.1.7, we know that two of these characters will be xp and )1, the slopes at 0
and 1. The rest of the characters for these groups all function in a similar way to each
other. When considering the groups F,, for n > 3, we can observe orbits of break-
points. Expressing each breakpoint in F, as -7, each orbit consists of breakpoints
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such that a = k mod n — 1 for some fixed k. That is to say that there exists an orbit of
breakpoints where we can express each breakpoint in the form #, another orbit of

breakpoints where we can express each breakpoint as % and so on. We can see why
these orbits are disjoint most easily in the tree-pair representation. We will use F3 as
an example. Taking an arbitrary tree pair and a pair of corresponding leaves in the
tree pair, we can adjust the map by adding a caret to the left of the domain leaf and to
the right of the codomain leaf, shifting the corresponding leaf on the codomain tree.
However, as we are adding three-legged carets, we are replacing one leaf with three,
netting two new leaves each time and thus shifting the corresponding leaf two to the
right, as in 2.5. As we can only perform these shifts 2 at a time, the odd numbered
leaves can never map to the even numbered leaves, so these form the two separate
orbits.

/KR 1%\ S
1 2 3 3 4 5 4 5 3 4
2 3 5 6 7

1

FIGURE 2.5: A tree pair in F3, and a different tree pair constructed

by adding a caret to each tree. Note how the highlighted leaf in the

domain tree is mapped to a different leaf in the codomain tree in the
new construction.

Using these orbits of breakpoints, we can construct the remaining characters of F,
in the following way. Consider an individual breakpoint in an element f €F,. Each
breakpoint has a slope entering the breakpoint and a slope leaving. We can assign
a value to each breakpoint equal to the difference in gradient between the exit slope
7+ and the entry slope y_. We will adjust this slightly and say that v = log,(v+) —
logn(7y—), as this will allow our character to be additive. For orbits of breakpoints
X1, ..., Xy—1, we calculate the characters as the following ([Zar17], Definition 3.2)

pi(f) = ) r(x)

xeX;

While this is an infinite sum, almost all terms are 0, as any invisible breakpoints x
have the same exit and entry slope by definition, so y(x) is 0 for all invisible break-
points.

Important to note here is that this defines a unique character for each of the n — 1
orbits of breakpoints for F,. Adding those to the two characters provided by 2.1.7
provides us with n + 1 characters. However, from 2.1.8, we would expect F;, to have
n linearly independent characters. This implies that there is some linear dependence
between the set of characters xo, x1, ¥1, ..., ¥». In fact, we can deduce the relationship
between these characters by considering the changes in slope gradient.
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Take an arbitrary element f € F, and consider x1(f) — xo(f), the difference between
the log of the slope at 0 and the log of the slope at 1. If this is nonzero, then it
implies that the slope at 0 is different to the slope at 1, so the slope must change
somewhere in the function. As the function is piecewise-linear, this can only happen
at breakpoints. The @ characters detect whenever the function changes slope at a
breakpoint, and 2?:_11 1; is the net total that the slope has changed when considering
every breakpoint, and is therefore equal to the difference between the log of the final
slope (at 1) and the log of the initial slope (at 0). As such we have

n—1
x1(f) = xo(f) = ; i

which gives us linear dependence between our n + 1 characters. We will typically
exclude ¢,_; when talking about the characters of F, due to this, as Hom(F,R) is
spanned by the remaining characters.

2.2 The Stein-Farley Cube Complex

An incredibly important concept in the understanding of Thompson groups and of
their finiteness properties in particular, is the Stein-Farley Cube Complex. An early
version of this complex was developed by Brown in [Bro87] in order to prove that F
and associated groups had the F,, property. It was later adapted by Stein in [Ste92]
and Farley in [Far03] in order to prove further properties of Thompson Groups.
Chapter 3 is all about adapting this complex for use with Bieri-Strebel groups, so
we will take the time to explain its construction within the context of the Brown-
Thompson groups F,.

2.2.1 Brown’s Complex
The following is adapted from ([Bro87], Section 4) and [Zar19].

We define an n-ary forest as a non-empty ordered set of rooted n-ary trees. Just as
we constructed tree pairs in 2.1.1, we will construct the space of forest-tree pairs:
ordered pairs that consist of one n-ary forest and one rooted n-ary tree, where the
forest has the same number of leaves as the tree. By convention, we will consider
the forest on the left and the tree on the right and will write such a pair as (F, T).

Similarly to how we worked with tree pairs in 2.1.2, we will introduce an equiva-
lence relation such that two forest-tree pairs will be equivalent if one may be con-
structed from the other via the addition or removal of redundant carets, with redun-
dant carets defined as they were for tree-pairs. From here, we can form the equiva-
lence classes [F, T] by taking the set of all forest-tree pairs modulo the equivalence
relation.

From here, we will impose a partial order on the set of equivalence classes X in the
following way: we define a split as a transformation of a forest-tree pair that changes
the forest by deleting the top caret of a tree contained within that forest, replacing
the tree with two trees, each of which was a subtree of the original tree.
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A A

FIGURE 2.6: A split in the first tree of a two tree forest, with the sub-
trees of the split tree highlighted.

From here, we impose the partial order by saying that [F, T| < [F/, T'] if [F/, T'] can
be produced from [F, T] via performing any number of splits. We can see this is a
partial order as it fulfills the following criteria:

 Reflexivity: [F,T] < [F,T] as you may perform 0 splits to reach [F,T] from
[E,T);

¢ Antisymmetry: Splits necessarily increase the number of trees in a forest. If
[F,T] < [F/,T'] < [F,T], then F has at least as many trees as F’ and F’ has at
least as many trees as F. Thus the number of splits performed to reach one
from the other is 0 and therefore F and F’ are the same forest;

e Transitivity: If there is a path of splits A that constructs [Fa, T4] from [F, T],
and a path of splits B that constructs [Fg, Tg] from [F4, T4, then the composed
path AB constructs [Fg, Tg] from [F, T]. Thus [F, T| < [Fa, Ta] < [Fg, Ts] =
[F, T] < [Fg, T]-

Having created the poset X. We also wish to show that it is directed, that is to say,
for any two elements x, x" € X, there is an element y such that x < y, x’ <y. We may
show this by considering the forest-tree pairs. Taking two forest-tree pairs [F, T] and
[F/, T'], we can construct the forest-tree pair [F”, T”] in the following way:

We begin by constructing T” similarly to how we perform tree-pair composition:
superimposing T and T’ will create T”, which may be constructed from T and T’ via
the addition of redundant carets, and as we are working with equivalence classes,
we can make the forest-tree pairs [F,T”] = [F,T] and [F'], T”] = [F/,T]. As F and
F’ are each in a forest-tree pair with T”, we know they both must have the same
number of leaves as T”, and thus the same number of leaves as each other. We will
then perform splits on F and F’ until each consists of the same number of trivial trees
(trees with no carets). We will label this trivial forest F”. As we can reach F” from a
sequence of splits from both FandF’, we must have that [F”,T”] > [F,T”] = [F, T|
and [F”,T”] > [F/, T”] = [F/, T'], and thus the poset is directed.

From here, we may construct the geometric realisation X of the poset X in the fol-
lowing way:

¢ The 0 cells, or vertices, of the space X are the elements of the poset X.

e There is a 1-cell, or edge, joining two vertices %, x' € X" if x < ¥’ (or x’ < x) in
the poset.

¢ The O-cells xy, ..., ¥, form an n-simplex if we have xo < ... < x,, in the poset.
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This constructs X as a simplicial complex. F, has a free action on this complex via
tree pair composition. Treating [F, T| as a tree pair allows us to compose it with a
tree pair [Ty, T,] in F,, giving us a right-F, action on the complex. Unfortunately, X
is not F,, finite, so we cannot draw finiteness properties directly from this complex.
In [Bro87], Brown uses Brown’s criterion (discussed in more detail in chapter 3) to
determine finiteness properties for F,, from this complex. In addition to other geo-
metric setup, Brown uses the following result regarding posets that will be useful to
us later

Citation 2.2.1. [Qui73] If a poset X is directed, then the geometric realisation X is con-
tractible, that is to say that all of its homotopy groups are trivial.

This allows us to conclude that X is contractible. Stein and Farley’s adaptations to
Brown’s complex will maintain this property, as it remains exceedingly useful for
calculating finiteness properties for F,,. Our adaptations of Brown’s complex and of
the Stein-Farley cube complex in 3 and 4 will also preserve this property.

2.2.2 Stein’s Complex
The following is adapted from [Ste92] and [Zar19].

Stein adapted Brown’s complex through a process of simplification that maintained
the structure of the space, including the action of F,, on the space and its homotopical
properties. The 0-skeleton of Stein’s complex is identical to the 0-skeleton of Brown’s
complex. The 1-skeleton is significantly reduced.

Stein’s complex still uses splits to determine the 1-skeleton, but instead of two ver-
tices being connected if there is any sequence of splits to construct one from the
other, we restrict to "elementary" sequences of splits. A sequence of splits is elemen-
tary if each tree of the forest is split only once. That is to say that once a tree has been
split, none of its subtrees may be split in an elementary sequence. If a forest-tree pair
[F/, T'] can be constructed from an elementary sequence of splits on the forest-tree
pair [F, T|, then we write [F,T] < [F/,T']. We can see that [F,T] < [F,T'] =
[F,T] < [F/, T'], but =< is not an equivalence relation, as it is not transitive.

The n-skeleton is determined similarly to Brown’s complex, but for a sequence of
elements xp < ... < x, to be an n simplex in Stein’s complex, we require that x; < X;
for all i < j < n. Despite this removing the vast majority of n-simplices in the
complex, we can still show that the space is contractible by building back up to
Brown’s complex from Stein’s complex

Lemma 2.2.2. ([Zar19], Proposition 4) Stein’s complex X' is homotopy equivalent to Brown's
complex X, and is therefore contractible.

Proof. We begin by considering the maximal elementary sequence of splits of a for-
est. Given a forest F, there is a unique forest F’ obtained by splitting each non-trivial
tree of F, and not splitting any subtrees of those trees. We call this the elementary
core of F, or F'. Now consider x,z € X such that x < z but x ﬁ z. We consider the
subset of X defined as the following:

(x,z) ={yeX|x<y<z}

For each element y € (x,z), we know there is a sequence of splits 7 that produces
y from x. We will remove from 7 all splits on subtrees of x, creating the elementary
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sequence ' that constructs the element i’ from x. Clearly x < i < y < z, and
therefore iy’ € (x,z). We will construct the map o(y)(x,z) = (x,z) : y — y'. We can
see 0 is a poset map and that 0y, is the identity map on Im(c), so by ([Qui73],

—_—~—

section 1.5), we can conclude that the subspace (x,z) C X, the geometric realisation
of the poset (x, z), is contractible.

From here, our goal is to show that we can build X out of X’ by gluing in missing
simplices, and that any time we glue in a simplex, the relative link we glue along
is contractible, meaning the new simplex does not change the homotopy. If we can
build X out of X" without changing its homotopy, then X and X’ must be homotopy
equivalent, and thus X’ is contractible. The missing simplices can be grouped into
subcomplexes of the form

—~—

2= {yeXjx<y<z}

where x ﬁ z, as the subcomplexes where x < z are already in X'. The relative link

—~

we glue [x, z] along is

e~ e~ P ~——

xz)J(xz={yeXx<y<z}J{yeX|x <y <z}

From here, we can see [x,z) | (x, z] is the suspension of [x, z], as it is just [x, z] with
the addition of the points X and z and the connecting k-simplices. As (x,z) is con-
tractible, and the suspensions of contractible spaces are themselves contractible, we
know the relative link is contractible. Thus constructing X out of X’ does not change
homotopy, so they must be homotopy equivalent. O

2.2.3 Farley’s Complex
The following is adapted from [Far03] and [Zar19].

Stein’s complex was further adapted by Farley for use with diagram groups [Far03].
Farley was not only able to use the complex for the F, finiteness properties previ-
ously discussed, but was also able to use it to prove cubulative properties for dia-
gram groups.

Farley’s adaptation is in many ways a continuation of Stein’s. The primary change
is the further removal of 1-cells and the merging of k-cells. While Stein’s complex
has an edge between any two vertices ¥ and x such that x < x’, Farley reduces this
so that there are only edges between ¥ and x’ if x' may be constructed from x by a
single split.

The key realisation of construction is that the 1-skeleton of the space (= x) := {y € X|x <y}
is a boolean lattice, which can be seen when considering the trees in the forest F,

where x = [F, T], have 2 states in the elements of (> x), they can be split or not split.

As such each element of (> x) can be recognised by which trees of F have been split

to construct them, forming a boolean lattice. As such, all cells in the complex can be

seen as cubes, making it a cube complex.

Definition 2.2.3. ([Sch], 2.1) Take C a set of cubes such that for each element ¢ € C,
¢ 2 [0,1] for some k € IN. Take S a set of isometries such that each ¢ € S is an
isometry o : F — F/, where F, F’ are faces of cubes ¢,¢’ € C. We restrict S such that
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there are no maps o : F — F’ where F, F’ are faces of the same cube, and such that
for any two cubes ¢, ¢’ € C, there is at most one map ¢ € S mapping a face of c to a
face of ¢’ or vice versa. Then the space X = (L.ecc)/ is a cube complex, where is
the equivalence relation generated by {x o(x)|c € S, x € dom(x)}.

[T},T5,T3]

[T{/TérT?)] [Tl/TélTé]

[T],T>,T5] [T1,T>,T5]

[T1,T5,T35]

FIGURE 2.7: The lattice of a cube constructed by different possible
split sequences of a forest with three trees.

Citation 2.2.4. ([Sch],2.10) A cubical complex X is a complete geodesic metric space, with
the metric d such that d(x1,x) = 1 where x1, x5 are any two distinct vertices in X joined
by an edge, if X is either finite dimensional of locally finite.

Definition 2.2.5. [Gro87] Let (X, d) be a geodesic metric space. If, for any geodesic
triangle A\ in X with comparison triangle A in (R?,d), and any two points x,y € A,
we have that d(x,y) < d(%,7), then X is a CAT(0) space.

Lemma 2.2.6. ([Far03], Theorem 1) The Stein-Farley Cube complex X" is a CAT(0) cube
complex.

To prove that Farley’s complex is a CAT(0) space, we will need to use tools that rely
on Farley’s complex being a geodesic metric space and cube complex, so we will
prove this first.

Lemma 2.2.7. The Stein-Farley Cube complex X" is a cube complex and a complete geodesic

metric space.

Proof. Consider the height function f on X”(O), where f(x) is the number of trees
in the forest of the forest-tree pair of x. By construction, each n-cell in X” has a
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unique vertex x such that f(x) is the lowest among vertices incident to that cell. As
discussed at the beginning of this subsection, we can consider the n-cells above each
vertex x as an n-cube, where n < f(x). As we can consider all n-cells in this way,
each n-cell in X” is an n-cube, and thus X” is a cube complex.

We can see that X” is locally finite as each vertex x has f(x) vertices x’ that are
joined by edges to x such that f(x) < f(x) (one for each tree in the forest of x) and
f(x) — 1 vertices x” connected by edges to x such that f(x”) < f(x) (one for each
possible merge of two consecutive trees in the forest of x). As f(x) is always finite,
the number of edges incident to x is always finite, and thus X" is locally finite. 2.2.4
then confirms that this is a complete geodesic metric space. O

To prove 2.2.6, we will have to introduce two new concepts for working with CW-
complexes. Both of these concepts will prove useful for proofs in later chapters.

Definition 2.2.8. ([Sch], 2.14) For X a geodesic metric space and cube complex, the
link Ik(v, X) of a vertex v € X is the spherical complex {x € X|d(x,v) = €} for some
0 < € < 1, with induced structure from X.

The link of a vertex x detects each n-cell incident to x. Each one appearsasann — 1
simplex in the link, and incidence between these cells is preserved. This makes the
link a powerful tool for detecting connectivity locally in a CW-complex.

Definition 2.2.9. A simplicial complex X is considered flag if every finite subset of
X that is pairwise joined by edges forms the 0-skeleton for a simplex in X. Another
way of saying this is that, any time the 1-skeleton for a simplex appears in X, that
simplex must also appear.

Citation 2.2.10. [BH99] If X is a locally finite, simply connected cubical complex and, for
each vertex x € X0, Ik(x) is a simplicial flag complex, then X is a CAT(0) space.

Before we prove 2.2.6, we must also borrow an observation from Brown that was
originally developed for Brown’s complex, but applies to both Stein’s and Farley’s
complexes as well.

Citation 2.2.11. ([Bro87], Lemma 4.18) Consider an n-ary forest F, and a set of merges of
n consecutive trees of that forest Y1, ..., Yy. Each merge Y; may be considered as an n-tuple of
consecutive trees. The merges Y1, ..., Yy have a lower bound (that is to say, a forest that all of
them may construct through repeated merges) if and only if the n-tuples of consecutive trees
are pairwise disjoint. Furthermore, they have a highest upper bound that is reached from F
by performing each merge Y; in any order.

Proof of 2.2.6. We know from 2.2.7 that X” is a cube complex and locally finite. Fur-
thermore, we know X" is simply connected as it is contractible, as the Stein complex
X' is contractible and X” is homotopy equivalent to the Stein complex.

We now need to show that the link /k(x) is flag for each vertex x. We consider
the link in the following way: Any two ascending edges (edges to vertices x’ such
that f(x) < f(x’)) have a 2-cell between them, as each edge represents a split of a
different tree in the forest of x. Furthermore, any set of k ascending edges forms part
of the 1-skeleton of a k-cell for the same reason. As such, any time a 1-skeleton of a
simplex S appears in Ik(x) where each vertex s represents an ascending edge from
x, we know the simplex S will appear in Ik(x) as well.
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Similarly, if the 1-skeleton for a simplex S appears where all the vertices represent
descending edges, then we know that the merges represented by those descending
edges are pairwise disjoint, as each pair of edges have a 2 -cell between them, which
implies a lower bound for those two merges, which implies disjoint by 2.2.11. As all
of these edges are pairwise disjoint, they must have a lower bound by 2.2.11, and as
such there must be an n-cell between them, so the simplex S must appear in lk(x).

Finally, if we have an ascending edge and a descending edge with a 2-cell between
them, we know that the split must be disjoint from the merge. Consider the vertex
x’, which has the forest produced from the forest of x by the split represented by the
ascending edge. The existence of the 2-cell (of which x’ is the unique highest vertex)
implies a lower bound for the merge represented by the descending edge from x
and the inverse of the split represented by the ascending edge of x. By 2.2.11) these
merges must be disjoint, and thus the split and merge from the forest of x must be
disjoint as well. Thus if there is the 1-skeleton of an n — 1-simplex S in lk(x), then
any ascending and descending edges represented by vertices in S must have disjoint
merges and splits, and so we can perform all the merges to reach the unique lowest
vertex of the n cube that would imply the existence of S in lk(x), and then construct
the cube by performing all the splits and inverse merges in any order. O

When a group is described as "cubulated", it is generally meant that the group has a
free, proper action on a finite dimensional CAT(0) cube complex. F,’s action on the
Stein-Farly Cube Complex does not fulfill this criteria, as the complex itself is not
finite-dimensional. However, these groups are still frequently described as cubu-
lated due to this action. Wise and Jankievicz have described a group with a similar
action as "curiously cubulated" [JW21]. We will use this term to indicate that these
actions are different to what is often used by the term "cubulated".

2.3 Bieri-Strebel Groups

Definition 2.3.1. ([BS16], page ii) For an interval of the real numbers I, a multi-
plicative subgroup of the group of positive real numbers P and a Z[P] submodule
of the real numbers A, we define the Bieri-Strebel group G(I, A, P) as the group of
piecewise-linear, orientation preserving homeomorphisms of I such that:

* All gradients are in P.
* There are finitely many breakpoints between the slopes.
¢ All breakpoints fall in I N A.
Thompson’s group Fis the group G([0, 1], Z[3], (2)) and F, is the group G([0, 1], Z[1], (n)).

2.3.1 Algebraic Numbers and Subdivision Polynomials

While Bieri-Strebel groups are very general in their basic definition, it helps to limit
the scope of discussion in order to develop more specific results. As such, when we
discuss Bieri-Strebel groups, we will generally mean Algebraic Bieri-Strebel groups.

Definition 2.3.2. For a positive algebraic number f, the algebraic Bieri-Strebel group
Fg is the Bieri-Strebel group G([0,1], Z[B], (B)).
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Algebraic Bieri-Strebel groups are particularly useful to study as groups of parti-
tion pairs, as discussed in 2.1.1. This is due to algebraic numbers association with
polynomials, which we may use to build partitions.

Definition 2.3.3. A subdivision polynomial is a polynomial of the form a,x" + a,,_1x"~! +
.. + a1x — 1, where g; are all in Z .

Lemma 2.3.4. ([Win], Lemma 2.2.1) Any nontrivial subdivision polynomial P(x) has ex-
actly one real root greater than 0, and that root lies between 0 and 1.

Proof. We can clearly see that P(0) = —1 and that P(1) > 0 as long as we don’t have
a; = 0 Vi or that exactly one a; equals 1 and all else equal 0 (these cases are trivial
and can be disregarded). As P(x) : R — R is a continuous function, there must be
some value 0 < B < 1 such that P(B) = 0.

To show that B is unique, we will suppose there exists B’ # B. Without loss of
generality, assume B < B’. As a; are all non-negative (excluding again the trivial
case where a; = 0 for all i), we know that P(B) < P(p’). As such, they cannot be
equal and P(p') # 0. O

Please note that in [Win], Winstone expresses his subdivision polynomials in the
form x" — a1x" ! + ... + a,_1x + a,. This has two uses for Winstone. This has uses in
his case, but is not our prefered method of expressing subdivision polynomials. The
primary difference this creates is that our subdivision polynomials have a unique
root between 0 and 1, while Winstone’s polynomials have a unique root greater than
0.

The reason we call polynomials of this form "subdivision polynomials" is that they
form a method of subdividing an interval into } ;' ; 4; intervals, each with a length
in (B). This is extremely useful for assembling partition pair representations of el-
ements of Fg. This can be achieved by writing P(8) = 0, where B is the positive
real root of our subdivision polynomial P. As each subdivision polynomial has a
—1 constant term, we can rewrite this equation as a,8" + a,_1 ﬁ”fl +..+ap=1
As we will generally choose 1 as the length of our interval when constructing Alge-
braic Bieri-Strebel Groups, we can interpret this equation as the sum of the length of
these segments (which all have length expressible in the form g* for some k € IN) is
equal to 1. Thus, we can divide the interval into }_}_, a; segments, comprised of a,
segments of length ", a,_1 segments of length ,3”*1 and so on. We can find such a
partition for any B that is the positive real root of a subdivision polynomial.

0 1
2
I S T
o ‘ |
FIGURE 2.8: A partition of the unit interval based on the subdivision
polynomial x? + 2x — 1

This method of partition can be applied to any of the subintervals created by the
previous partition in a manner similar to the repeated bisection seen when forming
partition pairs for F. As long as the same polynomial partition is consistently used,



2.3. Bieri-Strebel Groups 27

all created subintervals will have length in (8). This is extremely useful when form-
ing elements of F, as the gradient of the piece of any element that maps ' to p/ will
be p/~*, which will always be in (f), the slope group for Fg.

Applying the methods of subdivision polynomials to our previous examples allows
us to see Algebraic Bieri Strebel groups as a natural generalisation of F and F,,. As
partitions in F split an interval into 2 equal parts, and partitions in F,, split an interval
into n equal parts, we can assign them the subdivision polynomials 2x — 1 and nx — 1
respectively. Thus we can see F,, as the "linear" Bieri-Strebel groups, that is to say the
algebraic Bieri-Strebel groups with linear subdivision polynomials.

2.3.2 Winstone’s Tree Pairs

An important result for our understanding of Algebraic Bieri-Strebel groups, and
those with quadratic subdivision polynomials in particular, was the development
of tree-pair presentations for these groups. Tree-pairs were originally introduced
for the group with subdivision polynomial x? + x — 1, commonly written as F, by
Burillo, Nucinkis and Reeves in [BNR21]. This paper has three major conclusions for
the development of tree-pair representations for algebraic Bieri-Strebel groups. The
first is that the different lengths of intervals, all of which are of the form ﬁk for the
group Fg, correspond to different depths on the tree, and as partitions in Bieri-Strebel
groups create intervals of different lengths, the carets representing those partitions
should have legs reaching to different depths.

The Second realisation follows on from the first. As partitions are no longer creat-
ing multiple intervals of the same length, the order that those intervals appear in is
important. To represent this in tree pairs, we have to make use of multiple different
carets, which order their legs of different length in different ways.

T2 T T T

FIGURE 2.9: The two caret types for the Bieri-Strebel group corre-

sponding to x> + x — 1, known as Fy, and the interval partitions they

each represent. We consider the long leg at depth 2 and the short leg
at depth 1.

The final realisation is an extension of the second. With two different types of carets
with which to build trees, it is now possible to build two trees with different carets
that represent the same interval partition. As such, when we wish to construct equiv-
alence classes of tree-pair diagrams as we did in 2.1.2, we have to include in the
equivalence relation the ability to switch between equivalent subtrees. We refer to
pairs of equivalent trees built with different carets as caret relations.
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3 3

FIGURE 2.10: Two equivalent trees built from carets in the F; tree-
pair presentation.

Burillo, Nucinkis and Reeves are able to use this tree-pair representation to construct
an infinite presentation for F;. The presentation contains two different infinite fam-
ilies of generators, corresponding to the two different caret types in the tree-pair
representation. The presentation also has a similar set of relations to the F presen-
tation in 2.1, and also has a set of relations corresponding to the tree equivalence
depicted in 2.10. Combining all of this, the presentation constructed in [BNR21] can
be written as

F: = <XQ,y0, xl,yl,...\a]-b,- = bia]-H fora,b € {x, y},l < j,‘ XiXit1 = y'12> (2.4)

When considering x; and y; as PL-homeomorphisms, we may write them in the fol-
lowing way

n for0<n<1-1,
xi(n) = T—anr—l(l—ri) forl_leﬁn'Sl—Ti—f—ri‘Hf,
i n+ tit3 forl—Tl+Tl+4§n§1_Tl+1’
Tl’l—{-rz for 1 _Ti+1 <n<1, (2‘5)
n for0<n<1-1,
yi(ﬂ) ={ 71n —T—l(l —Ti) forl— 7t <n<1- Ti‘H,
™ + 2 forl— 7t <n <1,

Burillo, Nucinkis and Reeves were also able to reduce this infinite presentation down
to a finite presentation containing 4 generators and 10 relations. As with the finite
presentation for F, this presentation is cumbersome to use in comparison to the infi-
nite presentation, but can be seen at ([BNR21], Section 4).

In his thesis [Win], Winstone was able to generalise these results to the quadratic
Bieri-Strebel groups, that is to say the algebraic Bieri-Strebel groups with a quadratic
associated subdivision polynomial. In doing so, Winstone developed two theorems
that will be important for this thesis, as well as an infinite presentation for a subset of
these groups. Quite possibly the most important result from [Win] is the following:

Citation 2.3.5. ([Win], Theorem 1.2.3) For a quadratic Bieri-Strebel group Fg with subdi-
vision polynomial of the form ax* + bx — 1, Fg has a well defined tree-pair representation if
and only ifa < b.
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When considering tree-pair representations of other quadratic Bieri-Strebel groups,
we have to consider the rapid increase of caret types as the coefficients of the subdi-
vision polynomial increase. As depicted in 2.9, the subdivision polynomial dictates
the possible interval partitions, and therefore the possible caret types. The impor-
tant observation is that the number of intervals in a partition for Fg is equal to a + b,
where Fg has the subdivision polynomial ax? + bx — 1. We would expect any caret
to have a legs of length 2 and b legs of length 1 (to correspond to the a intervals of
length 82 and the b intervals of length B in a partition for Fg. As such, there are (“jb )
possible caret types in the tree pair representation for Fg.

FIGURE 2.11: The three possible caret types in Fg with subdivision
polynomial x? + 2x — 1.

Winstone’s second major result simplifies the large variety of caret types for quadratic
Bieri-Strebel groups, making tree-pair representations much more manageable.

Citation 2.3.6. ([Win], Remark 35) There exist two caret types in each well-defined tree pair
representation of a quadratic Bieri-Strebel group such that for any tree within that tree-pair
representation, an equivalent tree may be constructed using only carets of those two types

This result is not just important for simplifying the tree-pair representations, but also
leads into the general presentation for quadratic Bieri-Strebel groups that have tree-
pair representations. Reducing each tree pair representation once again allows us to
generate Fg from two infinite families of generators. Using these caret types, and the
caret relations between them, Winstone was able to construct infinite presentations
for a large number of quadratic Bieri-Strebel groups.

Citation 2.3.7. ([Win], Theorem 1.2.5) Let Fg be an algebraic Bieri-Strebel group with asso-
ciated subdivision polynomial ax* + bx — 1. If a < b, then Fg has the infinite presentation:

Fg = (xo0, Y0, X1, Y1, | R1, R2) (2.6)

where Ry and R, are the relations:

Ri: figi = ifjrarv—1 forg, f € {x,y},i <j

) (2.7)
Ry XigaXitat1--Xig20-1Xi = YiYit1--Yiya—1Yi foralli >0

If we so desired, we could reduce these infinite presentations to finite presentations.
However, we will be using geometric methods to prove that each of these groups
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have the F, property in chapter 3, which will imply the existence of a finite presen-
tation. We have no immediate use for the finite presentations and so will leave their
existence implied rather than explicitly writing them out.

For quadratic Bieri-Strebel groups with subdivision polynomial ax? + bx —1,a > b,
not much is known outside of generalities for all Bieri-Strebel groups or other large
subsets of such groups. Winstone ([Win], Theorem 1.2.4) concludes that each such
group has an element g such that ¢ cannot be represented either as a partition pair
or as a tree pair. Owen Tanner ([Tan23], Theorem 3) was able to show that all such
groups are finitely generated.

Of particular interest are the groups with polynomial of the form (n — 1)nx? + x — 1
for n > 2. This polynomial can be factorised as (nx —1)((n — 1)x + 1) and therefore
has the unique positive root 2. By the definition of Algebraic Bieri-Strebel group
given in 2.3.2, we would expect the group with this subdivision polynomial to have
slopes in <%> and breakpoints in Z [%], which would make it the same as F,,. Notably,
F, can be expressed as the algebraic Bieri-Strebel group with subdivision polynomial
nx — 1, which when used to compute interval divisions and tree pairs in the style
of Winstone produces the tree-pairs described in 2.1.3. This leads us to make the
following conjecture:

Conjecture 2.3.8. A well defined tree-pair for an algebraic Bieri-Strebel group Fg can only
be derived from an associated subdivision polynomial P(x) if P(x) is the minimal polynomial
with the root B among polynomials of the form a,x™ + ...+ ax —1, a; € Z>.

Among linear and quadratic subdivision polynomials, we can see evidence for this
conjecture. In particular, we know that all linear subdivision polynomials take the
form nx — 1 for some x (with the polynomial having root 1. Should a quadratic
subdivision polynomial have the root 1, then by the factor theorem, that polyno-
mial must have (x — 1) as a factor, which can be expressed as nx — 1 when working
with integer polynomials. We can now use what we know about the general form of
subdivision polynomials to determine facts about other factors of the quadratic poly-
nomial. Since the polynomial is quadractic, it can only be factorised as the product
of two linear polynomials, meaning we can write

ax*> +bx — 1= (nx —1)(cx +d) (2.8)

Immediately, we can conclude thatd = 1,as —1*1 = —1. Similarly, we can conclude
¢ > 0, as otherwise 2 < 0, which would mean the quadratic polynomial would not
be a subdivision polynomial. That leaves us with the two equations 2 = nc and
b = n—c. Asn and c are both positive integers, we can therefore conclude that
a > b. As such, any time a quadratic subdivision polynomial ax% + bx — 1 shares its
unique positive root with a linear subdivision polynomial nx — 1, we have thata > b
and it therefore falls outside the set of subdivision polynomials for which Winstone
derived tree pairs.

We note that this statement cannot be an if and only if. That is to say that it is not
necessarily the case that a subdivision polynomial that does not share a root with
a sudivision polynomial of lesser degree will have a tree pair representation. As

a brief example, the polynomial 3x2 + x — 1 has the root @, which is clearly
irrational and therefore cannot be the root of any linear polynomial, but by 2.3.5,
this subdivision polynomial does not have a well defined tree pair representation.
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2.3.3 Higher Order Polynomials

For algebraic Bieri-Strebel groups with higher order subdivision polynomials, little
is known outside of general results for Bieri-Strebel groups, such as Tanner’s finite
generation result [Tan23]. A caret relation is known for the group corresponding to
the polynomial x® + x — 1, but it is unknown if this allows a well-defined tree-pair
representation.

FIGURE 2.12: The caret relation for x> + x — 1. It differs from
quadratic caret relations in that each tree uses both caret types.

While determining well-defined tree pairs for higher order Bieri-Strebel groups is
an as-yet unsolved problem, we are able to determine some cases where a tree-pair
representation based on the subdivision polynomial does not work.

Theorem 2.3.9. The Bieri-Strebel group with subdivision polynomial ax®* + bx" — 1 can-
not have a well defined tree-pair representation.

To begin to prove this, we must first issue a correction to a theorem in Winstone’s
Thesis

Citation 2.3.10. ([Win], Theorm 2.3.3) Forall 0 < p € Z|B], where B is the root of an n-th
degree polynomial, we can write:

p="Dbo+b1f+ ...+ by
where b; € Z> for all i

Counterexample. Consider the polynomial x* + x> — 1, with the root /7. We will
take p = 1 — /7. To work within Winstone’s framework (where he uses subdivision
polynomials with reciprocal root to ours, as noted in 2.3.1), we take g = \/?_1,

which means p = 1 — 7!, and as we have that g* — > — 1 = 0, we can say that
1371 = 133 — B, and therefore p =1 — /33 + B.
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Following the methodology of Winstone’s proof, the next step is to write the coeffi-
cients of p as a vector p and create the matrix A based on the polynomial x* — x* — 1

-1

N

Il
— o~ O
oo~
cor o
oOR oo

I

I
_ = O

To simplify a later segment, we will calculate

The core claim of Winstone’s proof is that there is N such that for N > N, AN p has
only positive entries. We will use the constructed example to show this is not the
case. First, we will calculate

At =

O =L ON
_ O N O
O R O -
[ = I Y )

Here we wish to emphasise the structure of the matrix, with alternating entries in
each row and column being empty. We will consider a general matrix of this form
and multiply it by A:

a 0 b0\ /0100 0 a0 b
0co0d||[1010]| |[c+td o0 c o0
e 0 fOoflooo1|T| o eo0 ¥
0¢g0nr/ \1000 g+h 0 g 0

Which has a similar alternating pattern, but all the nonzero entries are now zero and
all the zero entries are now nonzero. Multiplying this matrix by A again gives us.

0 a 0 b 0100 a+b 0 a 0
c+d 0 c O 1010 | 0 c+d 0 c
0 e 0 f]|0o001 e+f 0 e 0
g+h 0 ¢ 0/ \1 00 0 0 g+h 0 g

which is of the same structure as A%. As such, we can see that A2N will have the
same structure as A* for N > 2, an A2N*+1 will have the same structure as A®, for all
N > 2. We can now show that neither of these structures can create a vector AN p
such that all entries in the vector are nonnegative. We can simplify by using Ap as
the vector, from which we can clearly see: N
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a 0 b O 0 b
0 c 0d ol | —d
e 0 f O 11 | f
0 ¢ 0k -1 —h
0 a 00 0 —b
c 0dO0 o]l _ | 4
0 e 0 f 1] |—f
g 0 h O -1 h

As A is a nonnegative matrix, all entries in AN will be nonnegative for all N, and so
ANp will always contain two negative numbers for N > 5. O

It is straightforward to see that the alternating nature of this counterexample will
generalise to any polynomial of the form ax* + bx? — 1, as the resulting polynomial
A will just be

0100

a 01 0

00 01

b 000

and as such we have

a + b? 0 b 0
s | 0O a+b®> 0 b
AT = ab 0 a 0
0 ab 0 a

which has the same structure as A* from the counterexample. As such, the alter-
nating patten will repeat. We can then construct a p such that ANp always has a
negative number.

What is less immediately obvious is that this pattern extends to any a,x" + ... +a;x —
1 with the condition that the set of {iy, ..., i} where aj, is nonzero is not coprime. In
this case, we have that AN has the same structure as AN + k, where k = hcf(iy, ..., ix).
However, this can be seen with elementary matrix multiplication.

The next step is to show the following:

Lemma 2.3.11. For any B as the root of a quadratic subdivision polynomial ax> + bx — 1,

\/B is not in Z[B].

Proof. By definition, elements of Z[B] have the form ¢y + 18+ 2% + . ... However,

because B is the root of the quadratic polynomial ax? + bx — 1, we can write 2 =
% - gﬁ As such, any term with a % or higher power can be substituted, allowing us

to express any element in Z in the form c + dp.

Now, suppose /B € Z[B]. We can then write \/B = ¢ + df. From the property of
the square root, we can then write



34 Chapter 2. Bieri-Strebel Groups

(c+dp)(c+dp)=p

? +2cdp + d*p* = B
&+uw+ﬁ%—gm=ﬁ (2.9)
&b
a

, P
c—|—;—|—(2€d— )B=B

As B is irrational, we know that the only way for this equation to be true is if the
constant coefficients on each side are equal, and so are the j coefficients. This leaves
us with the simultaneous equations

2
c2+d—:O
d% (2.10)
2cd —— =1
a

From the first equation ¢? and d? are squares of numbers in Z, and therefore must
be positive, and a is positive by the definition of a subdivision polynomial (as the
subdivision polynomial in question is quadratic, 2 # 0 and so the equation is well
defined). As such, both terms of the sum must be nonnegative and so it can only
hold if c = d = 0. However, setting ¢ = d = 0 in the second equation results in the
equation reducing to 0 = 1. As such we have a contradiction and so our assumption
that /B € Z must be incorrect. O

We can also add this brief corollary:

Corollary 2.3.12. For any B as the root of a quadratic subdivision polynomial ax* + bx — 1,
n €N, X/Bis not in Z[p).

Proof. Z|[B] is closed multiplicatively, soif ¥/B was in Z|B], that would imply ( 3/B)"
/B is in Z|B], which we know is not true by 2.3.11. O

In the discussion of Winstone’s tree pairs in 2.3.2, we mentioned that carets in the
tree-pair representation of the Bieri-Strebel group with subdivision polynomial ax? +
bx — 1 will have a legs of length 2 and b legs of length 1. This is derived from the
polynomial itself, using it to partition the unit interval. As such, we will begin by
assuming that tree-pairs for higher order polynomials will be derived similarly.

Consider the tree pair representation formed from the non-coprime power subdi-
vision polynomial P; = P(x) = apx M 4+ a, k=1 44+ g3k — 1, where k € N.
Based on 2.3.2, we would expect carets in this tree-pair representation to have a, legs
of length k,, a,,_1 legs of length k(n —1) and so on. We now consider the polynomial
P, = P({/x) = anx" + a,_1x"~! + ... + a;x — 1. The carets in the tree-pair represen-
tation for this polynomial will have a, legs of length n, a,,_ legs of length n — 1 and
so on. From here, we can consider the map i from the set of carets for P(x) to the
set of carets for P({/x), which maps each caret to the caret obtained by dividing the
length of each leg by k. We can determine the number of possible carets in the caret
set for P(x) by determining the possible distinct orderings for the set of legs each
caret has, which is a, legs of length kn, a,,_; legs of k,_1, and so on. Similarly, the
set of possible carets for P({/x) is determined by the possible orderings of a,, carets
of length 1, a, — 1 legs of length n — 1 etc. As such, the set of legs being ordered for
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P(x) consists of the same number of subsets S[P;]; containing legs of the same length
as the set of legs being ordered for P({/x), and these subsets can be ordered in such
a way that |S[P;];| = |S[P,];| for all i. Thus the number of possible orderings for legs
on the P(x) carets is the same as the number of possible orderings for the P(y/x),
so the map is surjective, and if two carets in P(x) are mapped to the same caret in
P({/x), then they must have the same ordering of legs, and are thus the same caret,
and so the map is injective.

We now induce a map i* to tree pairs in the tree pair representation of P(x) by apply-
ing i to each caret in the tree pair individually, preserving adjacency between carets.
The path to each leaf from the root of the tree can be broken down into legs for carets,
and if i* applied to tree pairs just applies the map i to each caret in the tree, then the
depth of each leaf will be mapped from n to .

We consider the path from the root of a tree to an arbitrary leaf in a tree pair diagram
in the Bieri-Strebel group with P(x) as subdivision polynomial. each leg in this path
is of length k x b for some 1 < b < n. Thus the full path can be expressed as X" | k * b;
where m is the number of legs in the path. When we apply ix* to this tree pair, each
leg in this path is mapped from a leg of length k * b; to a leg of length b;. Thus the
length of this path is just £}" ; b;. As each b; is a natural number, so is ¥}"  b;, thus the
length of the path from the root to the leaf is a natural number, so the depth of each
leaf must be a natural number.

Consider now the preimage under i* of a tree pair [T;, Tp| in the space of tree pair
diagrams for P(y/x). The depth of the ith leaf in [Ty, T] has depth d; and so any
tree pair [T7, T;] in the preimage of [T}, T>] under i must be such that the depth of
the ith leaf is of depth k * d;. The equivalence relation between tree pair relations (in
particular the caret relations) dictate that two tree pairs are in the same equivalence
class if they have the same leaf depths in the same order, and so the map i* must map
equivalence classes to equivalence classes and cannot map two different equivalence
classes into the same equivalence class. We can see that it is surjective by considering
the map i, that multiplies each leaf depth by k. Clearly i*i, is the identity map on the
tree-pair representation for P({/x), so for each [T, T] in the tree pair representation
for P({/x) there must be a tree pair [T’, T'] in the tree pair representation for P(x)
such that i, ([T, T]) = [T', T'], i*([T', T']) = [T, T], and hence i* is surjective.

We can also see that i* is a homomorphism with regard to tree pair composition. We
can see this by performing tree-pair composition simultaneously in P(x) and P(/x).
Whenever we add a caret ¢ while working in P(x), we add i(c) to the same leaf in
P({¥/x). Thus i* is an isomorphism between the equivalence classes in the tree-pair
representations for P(x) and P(y/x). This leads us to the following lemma:

Lemma 2.3.13. consider B as the unique positive root of P(x) = a,x" + ...+ a1x — 1 and
{/B as the root of P (x%) = ayx*" + ...+ a;x* — 1. Suppose the tree pair representation based

of P(x) is a well-defined tree pair representation for Fg. Either F B = Fg, or the tree-pair

based on P(x¥) is not a well-defined tree-pair representation for F y/F

From here, we wish to construct an element we know isin F ,, 5 but cannot be in Fy.
We will construct an element that is in F NG and by a similar argument to the proof

B
of 2.3.12, must be in F % /G as well.

We first create a partition pair which we know cannot be in Fg. From 2.3.11, we know
that if a partition pair contains \/p as a nontrivial breakpoint, then that partition pair
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cannot be an element of Fg. From here, the simplest solution would be to have VB as
the sole breakpoint in the first partition and then have 1 — /B as the sole breakpoint
of the second partition. The issue with this is that the resulting map would map an

interval of length /B to an interval of length 1 — /B. This would require 1;}? to

be in (,/pB), which is challenging to prove. Instead, we will construct a partition pair
that has only slopes in (B). Since (B) C (,/B), we can then guarantee our partition

pair is in F\/E'

We create our partition pair in the following way. First we take two copies of the
interval with \/E as the sole breakpoint. From here, we subdivide the interval of
length /B in each partition in different ways. Each interval will now be divided
into a intervals of length B2 x /B and b intervals of length B x \/B, where B is the
root of ax? + bx — 1, implying

ap*+bp =1
ap? x\/B+bpx\/B= /B
The ordering of the subintervals in the partitions is arbitrary, aside from 2 points.

First, the sole interval of length 1 — /B must be the ith interval in each partition for
some i, and the partitions must not be identical.

ARvan

(2.11)

(e}
e
2
—_

NI
3
—_

T

FIGURE 2.13: An example of a partition pair in F - with the break-

point /T excluding it from F;. The slopes in this map have gradients
7, 77! and 1 from left to right

As seen in the example 2.13, maps constructed in this way have gradients in (,/B)
(indeed, they are in (B)), but as they have /B as a breakpoint, these maps are in

F VE but not in Fg. Thus, we can conclude that Fg is not the same group as F VB

and so the tree pair representation based on P(x?) is not a well-defined tree pair
representation for F 5 by 2.3.13. Similarly, this element is in F % /f and so P(x*") is

not a well-defined tree pair representation for F % /5

Finally, we need to preclude the possibility of a different tree pair representation. For
this we rely on our counterexample to 2.3.10. What we have shown with the coun-
terexample (and its generalisation) is that we can form an interval in a partition in
F NG with a length that cannot be expressed in the form ay8+* + a3k + 3 + ax 85+2 +

a1 via repeated subdivision (the substitution used in Winstone’s proof). How-
ever, were we constructing a tree to represent this partition, such an interval would
have to be expressed in this way. As such, these intervals cannot be expressed as
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part of a tree pair presentation and thus we have our proof that Bieri-Strebel groups
with associated polynomial ax* + bx? — 1 cannot have a well defined tree-pair rep-
resentation. Combining this with 2.3.12 is our proof of 2.3.9.

While this seems challenging to generalise in its entirety, we would like to offer this
conjecture regarding non-coprime power polynomials:

Conjecture 2.3.14. The Bieri-Strebel group with associated subdivision polynomial a, x*" +
an,lxk(”*l) + .+ a7k =1,k > 1 with not all a; = 0 does not have a well-defined tree-pair
representation.
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Chapter 3

Fo and a Cubulation for
Bieri-Strebel Groups

3.1 F, for Bieri-Strebel Groups

In this section, we will demonstrate the F. property for certain algebraic Bieri-
Strebel groups. This will be accomplished via the construction of a complex similar
to Brown’s complex for Thompson-Higman groups 2.2.1, followed by the applica-
tion of Brown’s criterion on the complex. This method is similar to the method used
by Cleary [Cle95]. The primary difference between our approach and Cleary’s is
that Cleary defines his complex through partition pairs and has to prove that all el-
ements of the groups he works with (in particular, Cleary wrote his proof regarding
the Bieri-Strebel group with subdivision polynomial x? 4 2x — 1) can be represented
by partition pairs. Our complex is constructed through forest-tree pairs (making
our complex closer to Brown’s complex) which allows us to take advantange of
Winstone’s tree-pair theorem 2.3.5 to prove the F. property for many Bieri-Strebel
groups at once. The ultimate goal is therefore to prove the following theorem:

Theorem 3.1.1. If Fg is an algebraic Bieri-Strebel group with a well-defined tree-pair pre-
sentation, then Fg is of type Fe.

and by combining it with Winstone’s tree-pair theorem, the following corollary:

Corollary 3.1.2. If Fg is an algebraic Bieri-Strebel group with subdivision polynomial ax* +
bx—1,a <b, then Fg has the F, property.

3.1.1 Brown’s Criterion

Brown’s criterion is an alternative method of proving the F., property for groups
rather than using the definition provided in 2.1.3. It is most useful when one is able
to construct a complex for a given group to act on, but the complex is not finite in all
dimensions (in the case of a K(G, 1)), or not finite in all dimensions when quotiented
by the G-action (in the case of an EG).

Definition 3.1.3. ([Bro87], section 2) A filtration of a G complex X is a family { X, }ep
of subcomplexes of X such that:

¢ Each subcomplex X, is invariant under the action of G (ie: gox € X, for all
geGxe X,
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¢ D is a directed set. That is to say, D has the preorder < such that any two
elements have an upper bound (as mentioned when discussing partial orders
in2.2.1).

* Foralla, B € D such that « < B, we have that X, C Xg.
* X = Urep Xa

Brown initially wrote his criterion as the following;:

Citation 3.1.4. ([Bro87], Theorem 2.2). Let X be a G-CW-complex such that 71;(X) = 0 for
i < nand that the stabiliser of any p-cell x € X is of type FP,_,. Take a filtration { Xy }xep
such that each X, has a finite n-skeleton mod G. Then G is of type FP, if and only if the
direct system of reduced homology groups {H;(X,)} has a trivial direct limit.

Brown also presents a corollary to this criterion, which is more directly applicable to
our method, and is indeed the result he uses when proving F, for the Thompson-
Higman groups.

Citation 3.1.5. ([Bro87], Corollary 3.3) Let X be a contractible G-complex such that the
stabiliser of every cell is of type Feo. Let {X;}i>1 be a filtration such that each X; is finite
mod G. Suppose the connectivity of the quotient space X;, 1/ X; tends to oo as j tends to c.
Then G is of type Feo.

Note that the filtration in this is stricter than requiring a directed set. Instead of
a preorder, the filtration in this corollary requires a full order and uses the set of
natural numbers IN as an index set for the set of subcomplexes forming the filtration.
This results in a full order of subcomplexes such that X; C X; wheneveri < j.

3.1.2 Construction of the Brown-Cleary Complex

The Brown-Cleary complex is an adaptation of both Brown’s complex for Higman-
Thompson groups (as described in ([Bro87], section 4)) and Cleary’s complex for
Bieri-Strebel groups (as described in [Cle95]), which itself was an adaptation of
Brown’s complex). It is more similar structurally to Cleary’s complex, but uses an
adapted form of Brown'’s forest-tree pairs. We shall construct these forest-tree pairs
from a generalisation of Winstone’s tree pairs for quadratic Bieri-Strebel groups. For
the algebraic Bieri-Strebel group Fg, each tree in a tree-pair representation for Fpg
will be built from carets in the set of caret types, Cg. The caret set Cg will have the
following assumptions:

* Each leg of a caret will have a length in the set IN of natural numbers.

* All the caret types ¢ € Cg will have the same number of legs of a given length
k, and thus the same total number of legs. Caret types shall be differentiated
by the ordering of legs of different length.

From here, the tree-pair representation shall be constructed as in 2.3.2: we consider
any ordered pair of rooted trees built with carets from Cg a valid tree-pair as long
as both trees have the same number of leaves. We will then quotient out by the
equivalence relation that considers two tree-pairs equivalent if one may be built from
the other via the addition or removal of redundant carets and/or the replacement of
a subtree with an equivalent subtree via caret relations.

From here, we shall form the set of forest-tree pairs X similarly to Brown. We will
consider a forest to be any finite ordered set of rooted trees built with carets from the
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caret set Cg. We will then consider the set of all pairs consisting of one forest and
one tree where the forest and the tree have the same number of leaves, modulo the
above equivalence relation once more.

A

FIGURE 3.1: An example of a forest-tree pair in the complex for the
group Fr.

As with Brown’s complex, we wish to add a partial order to this set of forest-tree
pairs to create a poset. While based on the partial order used by Brown, we make
adjustments to account for the different lengths of legs in our carets, which require
us to treat subtrees as existing at different depths depending on the length of the leg
to which they are attached.

Definition 3.1.6. A basic expansion of a tree contained in the forest of a forest-tree
pair is performed by splitting the tree by deleting the top caret, turning each maxi-
mal proper subtree into a distinct tree (preserving their order).

We will now define two maps from the space of forest-tree pairs to IN that will prove
useful for working with the space.

Definition 3.1.7. The map ¢ : X — IN maps an equivalence class of forest-tree pairs
[F, T] to the number of trees contained in the forest F.

The map t : X — IN maps an equivalence class of forest-tree pairs [F, T| to the
number of basic expansions required to obtain (F, T) from a tree-pair (considered as
a forest-tree pair with only one tree in its forest)

We can see that t is a well-defined map as the addition or removal of redundant
carets cannot add or remove trees to the forest F. Any added redundant caret must
be added to an existing leaf of F, and removing redundant carets can only reduce
a tree in F to the trivial tree, not remove it entirely. Additionally, the number of
expansions required to obtain (F, T) from a tree-pair is directly correlated with the
number of trees in F. Each basic expansion replaces 1 tree with k trees, where k is
the number of legs on each caret in the caret set Cg, resulting in a net increase of
k —1 trees. In order to make e well defined, we will restrict X to only forest-tree
pairs obtainable from a tree pair via a finite sequence of basic expansions. With this
restriction applied, we can see that ¢([F, T]) = (k+ 1)e([F, T]) — 1.

We can now define the relation < on X in the following way:
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Definition 3.1.8. For the equivalence classes of forest-tree pairs [F, T], [F/,T'] € X,
we have that [F, T| < [F/, T'] if there is a finite path of basic expansions a such that
performing a on [F, T| will create [F'T’].

Similarly to how we work with equivalence classes of tree pairs, we may add or re-
move redundant carets to forest-tree pairs and we may replace subtrees with equiv-
alent subtrees (as in 2.3.2) and still remain within the same equivalence class. As
such, the path a2 may include not just basic expansions, but also the addition and
removal of redundant carets and the exchanging of equivalent subtrees. It is worth
noting that the only type of action in a that can affect the number of trees in the forest
F is a basic expansion.

FIGURE 3.2: An example of a split performed on a tree with label 1.
Note that the empty subtree attached to the middle leg of the top caret
becomes a trivial tree after the split.

Lemma 3.1.9. The relation < is a partial order on the set X

Proof. Three properties need to be fulfilled by a relation to make it a partial order:
reflexivity, transitivity, and antisymmetry.

1. Reflexivity: The forest-tree pair [F, T| can be reached from itself via the empty
path of expansions 0, thus [F, T] < [F, T] and so the relation is reflexive.

2. Transitivity: If we have [F,T| < [F/,T'] < [F”,T”], then there is a path of ex-
pansions a that constructs [F/, T'] from [F, T| and a path of expansions b that
constructs [F”, T”] from [F/, T']. We can make the path ab that performs the ex-
pansions of a followed by the expansions of b. ab therefore constructs [F”, T”|
from [F, T]. Thus [F, T] < [F”,T”] and so < has the transitive property.

3. Antisymmetry: To prove antisymmetry we will consider a function from X to
IN. ¢([F, T]) is simply the number of trees in F. Consider the basic expansions
of [F, T]. If an expansion is performed on any tree, then it will increase ¢([F, T])
by an amount determined by the caret set Cg, but t([F, T]) must increase by at
least 1.

Suppose [F, T| < [F/,T'] < [F, T]. Therefore there is a sequence of basic expansions
a that constructs [F/, T'] from [F, T| and a path b that constructs [F, T| from [F’, T'].
As each basic expansion must increase ¢, we know t([F, T|) < t([F/, T']) < t([F, T]).
This immediately implies that t([F, T]) = t([F/,T’]). [F,T| must be constructible
from [F/, T'] by a sequence of basic expansions, but the only sequence of basic ex-
pansions that does not increase ¢ is the trivial sequence with no expansions. As
such, [F, T] = [F/, T']. Hence, our relation is antisymmetric. O
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As we have shown that < is a partial order on the set X, we can consider (X, <) a
partially ordered set, or poset. As with Brown’s complex in 2.2.1, we now wish to
show this poset is directed.

Lemma 3.1.10. The poset (X, <) is directed

Proof. To show this poset is directed, we must show that for any two elements [F1, Th]
and [F,, Ty, there exists an element [F*, T*] such that [F, T| < [F*,T*] and [F, T] <
[F*, T*]. We begin by constructing T* as the minimal tree that can be constructed
from both T and T’ by adding redundant carets and exchanging equivalent subtrees
via caret relations. Assuming our tree-pair representation is well defined, such a tree
always exists by ([Win], Lemma 2.7.9). Adding redundant carets will alter the forests
in the forest tree pairs as well, leaving us with [F{, T*| = [F;, T;] and [F}, T*] = [F, T»]
(while the forest-tree pairs have changed, they are each in the same equivalence class
they started in, as adding redundant carets and caret relations cannot move a forest-
tree pair outside its equivalence class).

From here we will perform all possible basic expansions on F| and F; without adding
redundant carets. The order we perform these expansions is arbitrary, but as an
example we shall say that we will perform a basic expansion on the leftmost tree
that is not a trivial tree. Repeating this process will construct from both forests F*,
the trivial n forest, which comprises of n trivial trees. We know that 7 is the same
number in both cases, as both F| and F; are in forest tree pairs with T*, which means
they both have the same number of leaves as T*, and the trivial n forest must have
n leaves. As such we know we can construct [F*, T*| by performing a series of basic
expansions on [F{, T*| and [F}, T*]. As such, we know [F;, T;| = [F{, T*] < [F*, T"]
and [F,, To] = [F}, T*] < [F*, T*] and so the poset must be directed. O
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FIGURE 3.3: An example of finding the element of X greater than two

given elements, including a subtree exchange (blue) and the addition
of a redundant caret (red).

As mentioned beneath 3.1.7, we have restricted the set X to only include forest-tree
pairs that can be constructed from tree-pairs (considered here as forest trees where
the forest only contain one tree) via a finite sequence of basic expansions. This will
restrict X in two main ways. First, it will limit X to only containing forest-tree pairs
[F, T] where F contains exactly (k — 1)n + 1 trees for n € IN, where k is the number
of legs on a caret in Cg. Secondly, it will guarantee that the only forest-tree pairs
without a possible reverse expansion (hereafter called contractions) will be those
with only one tree in their forest. This is what allows the function e : X — IN, which
maps a forest-tree pair to the number of expansions required to create it from a tree
pair, to be a well defined function.

Furthermore, we shall limit the form of each trees by limiting the variety of carets
to express those trees. Our biggest tool for reducing possible expansions is 2.3.6.

As discussed in 2.3.2, the Bieri-Strebel group Fg with subdivision polynomial ax? +

bx — 1, there are (”Zb) caret types in Cg, which clearly tends to oo caret types as a + b

tends to co. Using 2.3.6 reduces the number of caret types we need to consider to
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just 2 for all quadratic Bieri-Strebel groups, while not affecting the poset X in any
way. This is because any two forest-tree pairs [F, T| and [F/, T'] where either T or
the tree T; in F (ie: the ith tree from the left) have the same leaf depths in the same
order but are built with different carets are in the same equivalence class, and so fall
into the same element in the poset. Restricting to building with only two caret types
reduces the size of each equivalence class but, as shown by Winstone in 2.3.6, does
not remove any equivalence class in its entirety.

The general shape of the two carets we reduce Cg to is fixed. The first caret type
(called type a from now on) always has legs 1 to a be length 2 with all other legs
length 1, and the second caret type (called type b from now on) has legs a + 1 to
2a as length 2 with all other legs length 1. This is clearly well defined for groups
with well defined tree pairs, as by 2.3.5, the quadratic Biei-Strebel groups with well-
defined tree-pairs have subdivision polynomial ax2 + bx — 1, a < b and so the total
legs on each caretisa +b < 2a.

A
AVAYARA

FIGURE 3.4: Though there are 6 possible carets for the subdivision
polynomial 2x% 4 2x — 1, only the top two are necessary to represent
any possible partition pair with a tree pair.

We now take the geometric realisation X of the poset (X, <). As mentioned in 2.2.1,
the geometric realisation of a poset is a simplicial complex where each vertex is la-
belled with an element x € X and we insert an n-simplex between the vertices la-
belled by xy, ..., x, where xg < x1 < ... < xy.

From 2.2.1, we know that the geometric realisation of a directed poset is a con-
tractible simplicial complex, and so X is contractible. We can define a right action
X x Fg — X where Fy is the Bieri-Strebel group defined by tree pairs built with
the caret set Cg. We define this action by taking a forest-tree pair [F,T] € X and a
tree-pair [Ty, Tz| € Fg and performing tree-pair composition on these two objects (in
the order [F, T| [Ty, T2]). Recalling the mechanics of tree-pair composition described
in 2.1.4, can perform the first step by adding redundant carets and performing caret
relation exchanges to transform (F, T) into (F/, T') and (T3, T») into (T’, T}), then the
result of the composition is the equivalence class [F/, T;]. To determine the kernel
of the action of Fg on X, we have to identify the equivalence classes [Ty, T»] such
that [F/, T}| = [F, T]. We already know that (F, T) is in the same equivalence class as
(F',T"),as (F', T") was obtained from (F, T) only via the addition of redundant carets
and the exchanging of equivalent subtrees. Thus we can determine that [T}, T»] is in
the kernel of the action when [F/,T'| = [F/,T;], which immediately implies that
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T" = T;, which implies that [T", T;] = [T", T'], which is the identity element of Fg.
Hence, if an element f of Fg maps a vertex x of X to itself, then f is the identity
eleI~nent of Fg. As such, the action of Fgon Xis free, in that the stabiliser of any point
in X is trivial.

We will now impose the filtration {X,(y)<,}nez., where each subcomplex is the
complete subcomplex containing all x € X such that e(x) < n for some n > 0.

Lemma 3.1.11. Each subcomplex Xe(x)gn is finite mod Fg.

Proof. We first consider the subcomplex Xe(x)go- The only forest-tree pairs where
e(x) = 0 are those that have exactly 1 tree in their forest ie: tree-pairs. This means

Xe(x)<o taken with the action of Fg is precisely the tree-pair representation for Fg. As
Fj is transitive when acting on itself, Xe( x)<0 is trivial mod Fp.

We now consider X,,)<1. As e : X — Zx, for each vertex x € tildeX, <1, we
either have e(x) = 0 or e(x) = 1. We know that that all x such that e(x) = 0 are
contained within a single orbit, so we turn our attention to when e(x) = 1. As
mentioned beneath 3.1.7, t(x) = (k+ 1)e(x) — 1, and so all x such thate(x) = 1 must
have t(x) = k, where k is the number of legs on a caret in Cg. Consider two distinct
vertices x1,x, € X, with associated forest-tree pairs [Fj, T1] and [F, T»] respectively.
Both F; and F, contain exactly k trees, and we may consider each tree seperately.
As described in 2.1.4, given any two trees in a well defined tree-pair representation,
we can find a tree that contains trees equivalent to both trees (via caret relations) as
rooted subtrees. Considering the trees in the forests F; and F, are ordered, we can
add redundant carets and perform caret relation exchanges on [F;, T1] and [F,, T3]
until we obtain (F{, T{) and (F}, T;), where the first tree of F] is the same as the first
tree of F,. We can repeat this process on each other tree in F; and F, until we obtain
(F”,T1”) in the equivalence class of [F;, T1], and (F”, T,”) in the equivalence class
of [F,, Tp]. From here, we can observe that the tree pair equivalence class [T;”, T>"]
acting on the right of [F”, T;”] = [F;, T1] will produce [F”, T5"| = [F, T2]. [T1”, T2”]
is an equivalence class of ordered tree pairs and is therefore an element of Fg. Thus
for any two forest-tree pairs [F;, T1] and [F, T»] such that F; has the same number of
trees as b, there is an element of Fg that maps [Fy, T1] to [F>, T»] under the action of
F/g on X. To conclude this proof, we merely need to observe that, ase : X — Z>,
e(X) takes a finite number of values in any Xe(x)gn' We have just shown that each

Xe(x)—i 18 a single orbit for the action of Fg on X for any i € Z>, so there must be a
finite number of of orbits of Fg on Xe(x)gn- O]

Before we can begin to apply Brown’s criterion to the complex, we must demonstrate
the connectivity of the space.

Lemma 3.1.12. Suppose y1, ..., Y, are distinct simple contractions of the point x € X. Then
Y1, .-, Yn have a lower bound in the poset, that is to say an element y such that y < y;V1 <
i < n if and only if each contraction y; is disjoint from the other y;. If the set y1, ..., yx does
have a lower bound, it has a greatest lower bound z. That is to say that Yy such that y < y;
forl <i <mn,wehavey < z.

Proof. «: Suppose y1, ..., yi are distinct, disjoint simple contractions of x € X. Then
performing each contraction on x in any order will result in z, which is a lower bound
for the set y1,...,yx as z < y; for all i € {1,..., k} by any path of retractions from x
to z such that y; is the first contraction. =: suppose the set of contractions yj, ..., yx
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has a lower bound w. From the definition 3.1.6, we consider these contractions in
the following way. We may take a set of | consecutive trees, where [ is the number of
legs on a caret in Cg. We can then attach a top caret to merge these trees into a single
tree with label 1.

Suppose we have two distinct intersecting contractions on the forest F. This means
there is at least one tree in F that falls in both contractions. Contractions are per-
formed over a set of trees in F, but if we perform one of these contractions, then any
tree that falls in the intersection will no longer be a tree (it will instead be a maxi-
mal subtree of the tree produced by the contractions). As such, we cannot perform
2 intersecting type 2 contractions sequentially and thus they do not have a lower
bound.

Hence, we cannot form a lower bound for the set of contractions yj, ..., yi if there is
any intersection between any two contractions, and thus if there is a lower bound
then the set must be pairwise disjoint.

We again assume that the set of contractions yjy, ..., yx has a lower bound w. We now
know that the set must be pairwise disjoint, and thus we can form the lower bound
z by performing each contraction in any order. Suppose z < w. That would imply
that there is a path of contraction from w to z. But we know w < x, and so w must sit
on a path of expansions from z to x. However, we reach z from x by performing each
of the contractions y; and no others. So for z < w < x, there must be a contraction
y; that is not performed from x to reach w, so w cannot be a lower bound for the
contractions 1, ..., yx. Hence we can conclude that z is a highest lower bound for the
contractions y1, ..., Y. O

The remainder of the proof of 3.1.1 is very similar to the proof found in ([Bro87], Section 4).
3.1.12 is analogous to Brown’s Lemma 4.18, and the rest of the proof proceeds as in Brown.
It is presented here for completeness.

Lemma 3.1.13. For any x € X, the complex X is homotopy equivalent to the simplicial
complex %.(x) defined as follows

e The vertices of .(x) are the distinct simple contractions of the forest of x.

* A set of vertices spans a simplex if and only if the contractions are pairwise disjoint.

Proof. Let K be the space X_.. For any x’ < x take K,/ as the subcomplex ng/. This
space contains x” and precisely all points beneath it. x’ forms a simplex with every
chain of points xp < ... < x; < x’, and as such the space ng/ is a cone, and therefore
contractible. We can now write K = |J K/, where each x’ is a simple contraction of
X.

Consider a collection {x;} of simple contractions of x. We can see that if N Ky, is
nonempty, it is because there is a point beneath each x;. In other words, the con-
tractions x; have a lower bound. From this, we can see that (] Ky, will consist of the
lower bound z and all points beneath it, and is therefore just K,. Thus the inter-
section of any Ky, is contractible. From 3.1.12, we can therefore see K as the space
of simple contractions of x, with an n-simplex spanning a set of n disjoint simple
contractions. ]

Lemma 3.1.14. For any integer 1, there is an integer u(1) such that if the element x has a
forest tree pair [F, T such that F contains (1) trees, then X(x) is | connected.
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Proof. We consider X(x) in the following way. Each set of I consecutive trees in
the forest F can have two different merges applied to them (using one of the two
different caret types). As such, there are 2(f — k + 1) vertices in X.(x), which we can
group into pairs of merges that share a merge set (that is to say, merge the same set
of consecutive trees). Each pair is disconnected, but both vertices in each pair are
adjacent to the same vertices in (x). From this, we can immediately see that X.(x) is
connected as long as F contains at least 3k — 1 trees, as this means that any set of the
trees of F overlaps with at most one of the two end sets (ie: the set that contains the
first k trees, and the set that contains the last k trees). As such, any vertex in X(x) will
be adjacent to one of these two pairs of contractions, and the end set contractions do
not overlap and are therefore adjacent.

We can then perform an induction in the following way. Assume that the forest con-
taining n trees is m connected. We consider the forest containing n + 2k — 1 trees.
In this forest, for each set of n consecutive trees, there exists a disjoint set of k con-
secutive trees (if the set of n consecutive trees has fewer than k trees to the left of
it, then it has at most k — 1 trees to the left of it, which means it has at least k trees
to the right of it, forming a disjoint set of k consecutive trees). As such, for each m
connected subset of X(x), there is a pair of points in X(x) that suspends that subset.
Hence, any m + 1 spheres are suspended and the forest of n 4 2k — 1 trees is m + 1
connected. By induction, we can say that the forest with 3k — 1+ (m — 1)(2k — 1)
trees is m connected. 0

Proof of 3.1.1. To construct X< 1 from X, we add all vertices x such that h(x) =
h 41, and each one cones off the subspace ¥.,. Given the increasing connectiv-
ity of the spaces ¥, from 3.1.13 and 3.1.14, the connectivity of the quotient space
X<py1/ X<y goes to oo as I goes to co. Hence, by 3.1.5, the group Fy is Fe. O

3.2 Cubulation of Bieri-Strebel Groups

As the complex we have constructed is similar to Brown’s complex, we can perform
similar adaptations to it as described in 2.2.3. However, our scope is much more
limited. We intend to prove the following:

Theorem 3.2.1. The quadratic Bieri-Strebel group Fg with subdivision polynomial x* +
nx — 1 is able to act without a fixed point on a CAT(0) cube complex.

Similar to Farley, our intention is to restrict Brown’s complex by only restricting the
equivalence relation < to the relation <, where [F,T| < [F/,T’] if [F/,T’] can be
constructed from [F, T| with a single simple expansion. As in 2.2.3, this relation is
not an equivalence relation, as it is not transitive.

A complicating factor in applying this method to Bieri-Strebel groups is the presence
of caret relations. In F, there is only one caret type, in particular this means that each
tree will always produce the same ordered set of trees when we apply a basic ex-
pansion. Multiple different caret types mean that this is not true in the complex we
have constructed for Bieri-Strebel groups. As seen in the proof of 3.1.11, it is possible
to use redundant carets and caret relations to exchange any given caret in a tree for
any other caret in the caret set Cs. As both caret relations and the addition of re-
dundant carets do not change the equivalence class of a forest-tree pair, it is possible
to exchange the top caret of any tree for any other caret type without changing the
equivalence class of the forest-tree pair. Because of this, any tree in our forest can
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expand in |Cg| different ways. This presents an immediate obstruction to applying
Farley’s method of constructing a CAT(0) cube complex, as Farley’s method relies
on each tree having a single possible expansion. Our primary goal in this construc-
tion is therefore to produce a canonical expansion for each tree, without disrupting
the connectivity of the space.

. #ﬁ

FIGURE 3.5: Two trees that are interchangeable via caret relations, but
expand into different forests.

To assist in the construction of a cube complex, we wish to introduce a canonical
form to any tree that may appear in our forest, such that the top caret (and indeed
all other carets) are fixed for a given interval partition. To start, we may cite the
following result from Jason Brown

Citation 3.2.2. ([Bro18], section 6.1) For a quadratic Bieri-Strebel group with subdivision
polynomial of the form x* + ax — 1, we may write any element using Winstone's generators
(as in 2.3.7) such that there are no y; * terms for any i € Zy.

When translated to the language of tree-pair diagrams, this means there are no y-
carets on the right hand tree in the tree pair. We then apply the bijection i :Fg —
Fg, g — ¢~ 1. Considering the composition of tree pairs described in 2.1.4, it is fairly
straightforward to see that [T, T5][Tz, T1] = [T1, T1] = 1and so [Ty, To] ! = [T», T
Jason Brown’s normal form grants us a tree pair diagram for every element of Fg
such that the right hand tree countains only x-carets, and applying the bijection i
gives us a tree pair diagram for every element of Fg such that the left hand tree
contains only x-carets.
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Beneath 3.1.7, we restricted the space X (and by extension X) such that a tree pair
[F, T] is in X only if it can be obtained from a tree pair in the tree pair representation
of Fg by a finite sequence of basic expansions. We now further restrict the space
to X’ by only including forest-tree pairs obtained by expanding tree pairs in this
seminormal form with only x-carets in the left hand tree. We can use caret relations
and redundant carets to convert any forest-tree pair (F,T) into a forest-tree pair
in seminormal form with a generalisation of ([BNR21], proposition 2.1). Notably
this does not leave the equivalence class [F, T|. Thus no equivalence class of X is
eliminated in its entirety by this restriction.

The action of Fg on X and X is also worth considering under this restriction. In par-
ticular, if we compose the forest-tree pair [F, T| with the tree pair [Ty, T»], where T
contains y-carets, then we may be forced to add redundant y-carets to [F, T| in order
to complete the composition. This can be managed by applying ([BNR21], proposi-
tion 2.1) again once the composition has been concluded. Even if the composition
has y-carets in its forest, there exists a forest-tree pair in the same equivalence class
that does not.

With all this in mind, we can consider what effect this restriction has on expansions
and contractions. In X, we had two forest-tree pairs in the same equivalence class
that, upon expanding the same tree, produced two different forests (see 3.5 for an
example). This is due to the fact that the caret relations in Fg change not just a single
caret, but multiple maximal subtrees of the caret. As such, if we use a caret relation
to exchange the top caret of a tree in F, then expand it, this will result in different
trees than if we had expanded it without the caret relation. However, in X', we only
have one type of caret, so we may not apply caret relations. As such, the top caret of
each tree is fixed, and therefore each tree will always produce the same trees when
expanded. Similarly, a set of trees can only be contracted by joining each tree to an
x-caret, so each set of trees can only be contracted on one way as well.

With the space X' defined, if we wish to prove 3.2.1, we must show that Fg acts
without a fixed point on X’ and that X’ is a CAT(0) cube complex.

Lemma 3.2.3. X’ is a cube complex.

Proof. We will begin by showing that the cell above each x € X’ is a cube. Consider
the point x as a forest-tree pair [F, T]. If forest F in the reduced form of the pair
(F, T) has no trivial trees, then we can simply take the cell [x, ] which has as 0-cells
all elements y such that x < y, where < is Stein’s relation from 2.2.2. As this is
an operation we can perform once on each tree in the forest, every combination of
expanded and unexpanded trees forms a boolean lattice (as in 2.2.3). Now suppose
our reduced forest-tree pair contains a trivial tree in the forest. Our forest may only
contain x-carets. As such, when we add a redundant caret in order to expand the
trivial tree, it must be an x-caret. Hence, there is only one possible expansion for
trivial trees as well.

We now consider the intersections of such cells. Suppose the intersection of two cells
in X’ contains at least two distinct 0-cells (if not, then the intersection is either trivial,
or contains exactly 1 0-cell and is therefore a O-cube). Using the height function
e : X' — Z that maps a forest-tree pair to the number of expansions required to
construct the forest-tree pair from a tree pair, we take any 0-cell x with e(x) as low
as possible, and any cell y such that e(y) is as high as possible.
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First we consider that the 0-cells (considered as forest-tree pairs) have some sort of
poset relation. Say WLOG that x < y. Then there is a path of simple expansions (or
potentially a double expansion for a trivial tree) that constructs y from x. This path
must be contained in both of the intersecting cubes. By construction of the cubes,
all other orderings of the simple expansions that construct y from x (and the double
expansion that forms a 2-cell above a forest with a trivial tree) are paths through
both cubes, and so must appear in the intersection as well. As such, the intersection
of two cubes forms a cube.

We now consider that x and y have no poset relation. Consider each point in a cube
as a set of n boolean values, where 7 is the number of trees in the forest of its least
vertex (or 1 greater for each trivial tree). In this case, we can interpret the poset
relation as x < y if for each boolean value x; in x that is equal to 1, y; must also be
equal to 1. If a cube contains both x and y, it must also contain z = x OR y, where
each boolean value is 1 if it is 1 in either x or y. Clearly y > z, and as z is in both
cubes, it must be in the intersection, which means that () was not maximal for the
intersection. Due to this contradiction, we can discard this as a possibility. ]

Lemma 3.2.4. Fgacts on X without a fixed point.

Proof. We use the argument from 2.2.1, as it adapts to this complex without signif-
icant changes. We have an element of Fg, represented with the equivalence class
of tree-pairs [Ty, T»], act on the right of a forest-tree pair [F, T] via tree-pair compo-
sition, producing the forest-tree pair [F/, T]. If [F/,T'] = [F,T], then Ty = T, and
[Th, Tr] = 1p,, hence only the identity fixes any point of X' O

Lemma 3.2.5. X' is contractible.

Proof. Consider the poset X. Even with the identification of subforests produced by
expanding equivalent trees, the poset is still directed. For any two elements x,y € X,
we can find an element z > x, y by using the process in 3.1.10.

We now need to show that we may transform X into X’ without disrupting the con-
nectivity of the space. We proceed in the manner of Stein and Farley 2.2.3.

First, we consider Stein’s relation for forest-tree pairs, where [F, T| < [F/, T'] if [F'T’]
can be constructed from [F, T] by applying 1 simple expansion to any number of
trees in the forest F. We now consider the space

(x,z) ={y e X|x <y <z}

as with Stein’s complex, we can find i/’ as the greatest element such thatx <y’ <y <
z, whichmeans y’ € (x,z). We then once again use themap o : (x,z) — (x,z);y —
and ([Qui73], section 1.5) to show that (/x_:/z) is contractible. Finally, as with Stein’s
complex, we will replace simplices in X with subspaces Ec_,\z/] where [x,z] = {y €
X|x <y < z}. We express these as [/XTZ_Z/) N (/J:,_LZ/] which is the suspension of (x,Az/)

—_—

between the points x and z, and as we know (x,z) is contractible, its suspension
must be as well.

To transform this complex into a cube complex, we simply replace each subcomplex
[x, %] with an n-cube, where 7 is the number of trees in the forest of x. We know [x, X]
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is contractible, and an n-cube is certainly contractible as well. As such, we can see
X' is contractible. O]

Lemma 3.2.6. X' isa CAT(0) complex.

Proof. considering 2.2.10, to show X’ is a CAT(0) complex, we need to show the
following

1. X’ is a cube complex.
2. X' is simply connected.
3. For each vertex x in X/, the link Ik(x) is a flag simplicial complex.

For (1), we can refer to 3.2.3, and for (2) we can refer to 3.2.5, as X’ being contractible
implies X’ being simply connected. We can straightforwardly see that X’ is locally
finite through a similar argument as in 2.2.7. That is to say, as the number of vertices
adjacent to a vertex x associated with forest-tree pair [F, T] is limited by the number
of trees in F, and the number of trees in F is always finite, we know each vertex is
only adjacent to a finite number of other vertices, and as such X’ is locally finite.
We can now cite 2.2.4 to demonstrate that X’ is a complete geodesic metric space,
as such, our notion of links (as defined in 2.2.8 is well defined on X'. As such, the
only thing that remains to be shown is that each vertex x has Ik(x) as a flag simplicial
complex. We therefore wish to show that if there exists the 1-skeleton for a k-simplex
in Ik(x), then that k-simplex is also in Ik(x).

We consider /k(x) in the following way. Each vertex in Ik(x) is an edge in X’ and
therefore implies an adjacent vertex. An edge between any two vertices v, 0’ in lk(x)
implies the existence of a 2-cell containing x and the adjacent vertices in X'.

We first consider 1-skeleta contained entirely in the ascending link Ik'(x), based on
the height function i(x) which counts the number of expansions to construct x from
an element of Fg (considered as an element of X’). Any vertex in IkT(x) implies a
basic expansion of the forest of x. As discussed in the proof of 3.2.3, any two basic
expansions in the forest of x have a common expansion and can therefore be part of
a 2-cube with x as its lowest point. As such, the ascending link is an n 4 i-simplex,
where 7 is the number of trees in the forest of x, and i is the number of trivial trees
(which may be expanded two different ways, but those two ways have an upper
limit). Any 1-skeleta of a k-simplex in [k (x) would be the skeleta of a subsimplex of
the n + i-simplex, and therefore the k-simplex exists.

We now consider 1-skeleta contained within Ik*(x). Each vertex in Ik*(x) implies a
simple contraction, and two vertices v, v' have an edge connecting them if they have
a lower bound, which they only have if they are disjoint contractions. As such, all
the vertices in the 1-skeleta of a k-simplex in Ik*(x) are pairwise disjoint and as such
have a common lower bound. This common lower bound implies the existence of a
k-cube in X’, which then implies the k-simplex in Ik (x).

We now consider the 1-skeleton K of a k-simplex in Ik(x) that is not wholly contained
in IkT(x) or Ik*(x). As all edges in X’ imply a basic expansion or contraction, any
vertex x" adjacent to x must have that h(x’) # h(x). As such, all vertices in Ik(x)
are either in Ik (x) or Ik*(x). Therefore, the 0-skeleton of K can be considered as
(KO NIk (x)) U (KO NIk (x)). If there is a 1-cell connecting (K N IkT(x)) and (KN
Ik*(x)), then this implies the existence of a 2-cell with an expansion 1 of x to x' and
a contraction | of x to x* on its boundary. This further implies the parallel expansion
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where we perform 1 on x and the parallel contraction where we perform | on x'.
This is only possible if T and | are disjoint.

As such, for the 1-skeleton of a simplex K in Ik(x), we have that each vertex k of K
represents a distinct expansion or contraction of K and as these vertices are pairwise
adjacent, they must also be pairwise disjoint. As such, x sits on the cube C such that
the bottom vertex c of C is found from x by performing all contractions in {k} in
any order. All other vertices of C can be obtained from c by by first replacing the
contractions of K(?) with their inverse expansions, then taking a subset of K(°) and
performing those expansions in any order. The existence of C implies the existence
of Kin Ik(x). O

Proof of 3.2.1. Combining 3.2.3, 3.2.4 and 3.2.6 is our proof for 3.2.1. O
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Chapter 4

Bestvina-Brady Morse Theory

Something that has proven useful in the calculation of BNSR invariants of many
groups, in particular for Thompson-like groups, has been the application of Bestvina
Brady Morse Theory (see, for example, [WZ15] and [Zar17]). Bestvina-Brady morse
theory is a technique for determining the connectivity of a quotient space Y;/Y> for
certain filtrations of an affine cell complex Y. With a well-constructed cell-complex,
we may apply a suitable height function to certain layers of a filtration in order to
calculate the BNSR invariant using the definition 1.3.5.

4.1 Preliminaries

Definition 4.1.1. ([WZ15], 1.1) An affine cell complex is a complex constructed from
euclidean polytopes. More formally, a space X is an affine cell complex if it is the
quotient space of the disjoint union of a set of euclidean polytopes C modulo an
equivalence relation with two criteria.

e Every polytope in C is mapped into X injectively.

* If two polytopes have an interior point identified then the entire interior of
each polytope is identified isometrically.

Definition 4.1.2. [WZ15], 1.5) A Morse function (/,s) isamap X — R X R such that
both I and s are affine height functions on the affine cell complex X, the function s
takes only finitely many values on vertices of X, and there is an € € R such that

for any pair of adjacent vertices x, x' € X, we either have that |i(x) — h(x")| > € or
that h(x) = h(x") and s(x) # s(x’).

A Morse function with two functions like this is an adaptation of the definition of
Morse functions provided in [BB97], which has a single height function that is dis-
crete on vertices of the space. When working with such functions, we generally treat
h as the "primary" height function of the Morse function, with s allowing us to dis-
tinguish between two adjacent vertices that are mapped to the same value under 5.
This allows us to consider a greater range of functions for our height function 1. We
call the height defined by a Morse function the "refined" height. If possible, it is best
to choose a "secondary" height function s such that any two adjacent vertices in X
are mapped to different values by s, as this makes the second criteria for a Morse
function much easier to fulfil.

It is worth noting that it is possible to encode refined height into a single num-
ber and as such express our refined height function as a single function /' : X —
R. For example, we could have I'(x) = h(x) + as(x), where a < esup{s(x) —



56 Chapter 4. Bestvina-Brady Morse Theory

s(x’)|x, x’adjacent}. This forces the greatest possible difference in s between adja-
cent vertices to effect the value of /i’ by a smaller amount than the smallest possible
difference non-zero difference in # between adjacent vertices, Thus achieving the
same effect as the refined height as defined in 4.1.2. We have chosen to define our
morse functions in this way for a pragmatic purpose. The results in chapter 5 we
will be proving using Morse theory build on the work of Witzel and Zaremsky in
[WZ15] and [Zar17], and will directly cite useful results from both these papers. We
have elected to use the same definition of Morse function as Witzel and Zaremsky
in order to aid clarity when we incorporate these results into our own proofs.

A concept important to Bestvina-Brady Morse Theory is links. We have previously
defined the link of a vertex in 2.2.8, and so will not restate it here. However, we are
able to combine links with height functions to develop new concepts.

Definition 4.1.3. For a vertex x in an affine cell-complex X, and a Morse function
(h,s), the ascending link Ik**)T(x) is the intersection of an n-sphere (where  is
the greatest dimension of any cell x is incident to) of radius 0 < € < 1 and the
subcomplex X (j ¢)(x) of cells y that contain x such that i(x) = inf{h(y)|y € 7} and

s(x) = inf{s(y)|y € 7, h(y) = h(x)}.

Similarly, for the same complex and Morse function, we define the descending link
Ik(9)4(x) as the intersection of an n-sphere of radius 0 < € < 1 and the subcomplex
X (ns)(x) Of cells y that contain x such that h(x) = sup{h(y)ly € 7} and s(x) =

sup{s(y)ly € 7, h(y) = h(x)}

By the definition 4.1.2 we have provided of Morse function, every vertex adjacent
to a given vertex x in an affine cell complex must be deemed higher or lower than
it by a Morse function. This means that every edge incident to x will appear as a
vertex in elther the ascending or descending link. We can express this as Ik(x)(®) =
k)T () O) (1K) () (), However, that doesn’t mean we can say

lk(x) = kM1 () | 14 (x

as any k-cell with k > 1 that includes at least 0-cell adjacent to x that is higher than x
and at least one 0-cell adjacent to x that is lower than x, then neither the ascending
link nor the descending link will contain it.

Definition 4.1.4. For a vertex x in an affine cell-complex X, and a Morse function
(h,s), the ascending star st(*)T(x) is the subcomplex of X consisting of all cells 7
such that x is the vertex of minimal refined height in <. Similarly, for the same
complex and Morse function, the ascending star st*5)T(x) is the subcomplex of X
consisting of all cells 7y such that x is the vertex of maximal refined height in .

4.2 The Morse Lemma

Lemma 4.2.1. ([WZ15], lemma 1.7) Let X be an affine cell complex, (h,s) be a Morse
function and X,<y<p denote the full subcomplex of X supported on vertices x such that
s < h(x) < b for some numbers a,b in the codomain of h. Take p,q,r in R|J{zxoco} such
that p < q < r. If for every vertex x € X,<p<, the descending link lk;’;’s}gi(x) is at least
k — 1 connected then the quotient space X,<p<,/ X,<n<y is k connected. If for every vertex

x € Xp<n<q the ascending link lk,(f;’srn(x) is at least k — 1 connected then the quotient space
Xp<n<r/Xg<n<y is k connected.
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Proof. We only need to prove the first statement, as the second statement is the same
as the first if we exchange the Morse function (h,s) for (—h, —s). First, we will
show that we can assume r < co. Suppose r = oco. In this case, the subcomplex
Xp<n<r is just the "top half" complex X<, The compactness of spheres is a standard
result in topology which states that any n-sphere is compact for any dimension .
In particular, this means that all spheres are closed and bounded. As all spheres
are bounded, this means there exists some finite 7’ such that Xp<n<p contains all the
homotopy spheres of X,<;. As such, X,<;<, and X,<; are homotopy equivalent.
Homotopy equivalent spaces are fully equivalent for the purposes of calculating the
quotient space, and so whenever we see X,<; we may instead substitute X,<<,
thus assuming r finite.

We also wish to assume that r — g < €, where epsilon is as used in the definition of
Morse function 4.1.2. For this, we will use an inductive argument to show that any
case where r — g > € is equivalent to the base case where r — g < €. We begin with
the base case. Asr — g < ¢, and the distance between any two adjacent vertices is
at least €, we know that only one "layer" of vertices can exist in the space X,.;<,. In
particular no vertices in X, -j,<, are adjacent, and they are not adjacent to any higher
vertices in X,j<,. We consider the inclusion of X, <, into X, .;<,. Any vertex x
not in Xj,.;<, must be in X, j,<,. By assumption, x has a k — 1 connected descend-
ing link, which means the space for any I-cell for I < k with x as its uppermost cell
must be filled by an I cell. As such, the inclusion of X, .;<; into X, ;<, induces
isomorphisms in the first k homotopy groups of X,.,<, onto the first k homotopy
groups of X, ,<,. As the first k homotopy groups are all we care about with regard
to demonstrating the connectivity of the quotient space X,<n<,/X,<n<4, we may
continue to the general case. Considering a case where r — g < ne, we use the induc-
tive assumption to induce isomorphisms in the first k homotopy groups of X, ;<
and X, p<g1n-1c via the inclusion. We thus only have to consider the inclusion of
Xp<h<gin—1e into Xpop<gine- However, this is equivalent to the r — g < € inclusion,
which we can see by relabelling g = g +n — le and r = g + ne. As such we know
we may induce an isomorphism from the first k homotopy groups of X, ;<4 4n—1¢ to
the first k homotopy groups of X, <;<44ne- As such, with the inductive step, we can
induce isomorphisms from X, ;<; to X, <y<ine- Any finite r will have r — g < ne
for some 7, and as previously discussed, if  is infinite, we can substitute it with
some finite 7’. As such, any case can be reduced to the case wherer — g < €.

Moving forward with the assumption that » — g < €, our goal is to construct a well
order =< on the vertices of X;.;<, such that the quotient space

S=0/S<0 = XpanegU | st @)/ Xpaneg U U st () @)

w=v w=ov

is at least k-connected. Effectively, we are constructing an order to add vertices from
Xy<n<r into X, p<,4 in order to construct X, ;<, in such a way that, each time we
add a vertex we confirm that the connectivity of the quotient is maintained. Once
we have concluded adding vertices, we will know that the quotient X, <,/ X, <1<
is at least k-connected. We choose any order < on the vertices v of X, .j,<, such that

s(v) < s(v') = v < v'. Consider the construction of S<, from S_,. We introduce the
(hs)l
p<h

the boundary of the the star of v, dst(v), with v being the cone point. We claim that

S~y N Jst(v) is precisely the boundary of st;(j;’s,zi(v) in Xg;sh)g(h’s)(v) (which we will

vertex v and with it each cell in st (v). This cones off the intersection of S, and
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(hs)d

write as B), and that B is homeomorphic to [k p<h

(w). If this is true, then we already

know lkg;’s,zi(w) is k — 1 connected by assumption, so B and therefore S, N Jst(v) is
k —1 connected as well. As such, the construction of S<, from S, consists of coning

off a k — 1 connected space and thus the quotient space 4.1 is at least k — 1 connected.

We can see that S, N Jst(v) C B as intersecting dst(v) with S~, removes any vertex
w such that s(w) > s(v). As S<, N Ist(v) is a full subcomplex of Jst(v), in order
to show B C S-, N dst(v), we need to show that any vertex w adjacent to v with
(h,s)(w) < (h,s)(v) is in S<p. If h(w) < h(v) then h(w) < h(v) —e < r—e <
g, and hence w € X,<p<, € S<p. If s(w) < s(v), then w < v by the definition

of < and hence w € S~,. As such, B is precisely S~ N dst(v). We can see B is

homeomorphic to lkg;’s;zi(w) by the definition of [k and st. Hence the quotient 4.1 is

at least k connected. O

The Morse lemma is a powerful tool for determining connectivity. However, it is not
an if and only if criterion. As such, we cannot use it to demonstrate that a space is
not k-connected or essentially k-connected, which proves necessary when we wish
to demonstrate that a character yx is not in the k-th sigma invariant. Thankfully, there
is a corollary to the Morse lemma that provides an if and only if criterion on the
essential connectivity of a space.

Corollary 4.2.2. ([WZ15], Observation 1.8) Let an m — 1 connected affine cell complex X
be equipped with a Morse function (h,s) : X — R x R and assume that all ascending links
are m — 2 connected. Then the filtration { X<y }ner is essentially (m — 1)-connected if and
only if X<y, is m — 1 connected for some p, if and only if all X,y<y, are m — 1 connected for
all p' < p.

Proof. Ascending links in X are (m — 2) connected by assumption. As such we can
apply the Morse lemma 4.2.1 to determine that the quotient space X<, X,<pism —1
connected for any p < g. In particular, this implies the inclusion maps 713 (X,<j,) —
7k (Xp<p) are isomorphisms for k < m — 1 and surjective when k = m — 1. These
maps would be the trivial maps if and only if the homotopy groups of X, are
trivial, which is equivalent to X,<; being (m — 1) connected. Hence the filtration is
essentially (m — 1) connected if and only if X,<j, is (m — 1) connected for some p,
equivalently all p’ < p by the definition of essential connectivity (see 1.3.6). O
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Chapter 5

BNSR Invariants for Quadratic
Bieri-Strebel Groups

5.1 An Alternate Calculation for F;

The following section is the result of collaborative work between Lewis Molyneux, Brita
Nucinkis, and Yuri Santos Rego. Work contributed in its entirety by the other authors will
be labelled.

While our primary calculation of BNSR invariants will follow Zaremsky’s method
[Zar17], we may employ an alternate method for F;, the Bieri-Strebel group with
subdivision polynomial x? 4+ x — 1. We may combine the finite index theorems 1.4.1
and 1.4.2 with the method of Bieri, Geoghegan and Kochloukova for calculating the
sigma invariant of F in order to calculate the BNSR invariant.

5.1.1 Abelianization and The Character Sphere

We begin with some initial facts. We may cite ([BNR21], chapter 5) as a source for
the abelianization of F., which is Z? © Z/2Z. As such ro(F;) = Z? and therefore
S(F;) = S'. This means that we expect to be able to form a basis of Hom(F;,R)
from 2 linearly independent characters. We can now cite Bieri and Strebel ([BS92],
Chapter 3 section 3) which tells us that any group G of PL-homeomorphisms of the
interval will have a character o such that xo(f) = In(f’'(0)) and a character x; such
that x1(f) = In(f'(1)) for all f € G. As all characters in Hom(F;,R) fall into an
equivalence class in the character sphere, we can choose to represent the equiva-
lence classes [xo] and [x1] with any functions of the form logy(f’(0) and logi(f'(1))
respectively, where k € R>¢. In the case of F;, we will choose xo(f) = log:(f'(0))
and x1(f) = log<(f'(1)). As all slopes of functions in F; are in (1), this will result in

xo(f), x1(f) € Zforall f € F.

We can demonstrate the linear independence of these two characters by selecting
two elements f, g of Fr such that xo(f) =1, x0(g) =0and x1(f) =0, x1(g) = 1. As
an example, we choose f and g as the following elements of F.

> for0 <x <12
flx) =X 7lx—71* for?<x<T
X fort<x<1

fort?<x<rt

X for0 < x < 72
Tx + T2 fort<x<1.
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We can simply read off the slope at 0 and 1 for each of these elements, so it is easy
to see that they fulfil our requirements for f and g, thus demonstrating linear in-
dependence. As we have two linearly independent characters of Hom(F;,R), and
we know from the abelianization that Hom (F;,R) = R? we know that these charac-
ters must span Hom(F.,R), ie: we can write any character of F; as axo + by, with
a,belR.

5.1.2 The Subgroup K

Important to our calculation of the BNSR invariant of F- is the finite index subgroup
K C F:. Using the generating set from the presentation of F; given in 2.4, we define
K as the following subgroup

K = <x0/ X1, yll X2, y2>

As such, K is the subgroup generated by all generators of F. except for yy.
Lemma 5.1.1. ([MNSR24], proposition 4.2) |F; : K| = 2 and K, X Z> & Z./2Z

Proof. To demonstrate |F; : K| = 2, we claim F; = KU oK. We shall use the nor-
mal form for elements of F; introduced by Burillo, Nucinkis and Reeves ([BNR21],
Theorem 7.3). We may write any element f € F; in the form

g = Xy x Y Xy x, T x)
with iy, ..., iy, jo, .-, jm € Z>p and €y, ..., €, € {0,1}. Using the relations from 2.4, any
time we have x/*yo with k > 1, we may rewrite it as yox;;1. As such any coset fK,

f €F: we can write fK = xéoygoK. Cleary fK = Kwhen €y = 0, but we need to check
the case when €y = 1. In this case, we can repeat the following calculation

xgyo = xg~ xoyo
= xg’_lxoxlxl_lyo
=0y o
= xg’fly%xflyo (5.1)
= x5 Yoyox; !
= x¢ " 'yoypx; |

_ L o—1 -1
=Xy YoXoXx1X,

This allows us to shift an x( to the right of the yy one at a time, until we are left with
yoK. Hence each coset of K is either K or oK, and as cosets of a subgroup are disjoint
and partition the group, we know that = K U 10K, and hence |F; : K| = 2.

To calculate the abelianization of K, we will take our presentation for K and abelian-
ize the generators. For clarity, we will write abelian composition additively. Consid-
ering the relations carried over from the presentation 2.4, we can see that x; + ¥; =
X; + x{71 immediately reduces to X; = x; for all j > 1. Similarly, y; = y31 for all
j > 1. This reduces the generating set to xp, o, ¥1 and y;. We can eliminate j; with
the relation 2y = X1 + ¥» = 2%, implying y; = ¥7. This leaves us with 3 generators.
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Xp and X7 are free abelian generators, but we can see that 1y is of order 2 via the rela-
tion 2yjp = %p¥1. The abelian group with these generators is Z* & Z /27, and hence
Ky =2Z7?>07/27. O

A concept important to Bieri, Geoghegan and Kochloukova’s calculation of the BNSR
invariant of F is HNN-extensions. As we are adapting their calculation for F., we
will also need to understand HNN extensions.

Definition 5.1.2. Let H be a group and ¢ : H — H be a monomorphism. An ascend-
ing HNN extension with base H is a group given by the presentation

Hx*; o = (H,t|tht ' = o(h)Vh € H)

We will now introduce the subgroup F-[1], defined as the subgroup of F. generated
by {x1,y1, X2, Y2, ...}. We can see that this subgroup is isomorphic to Fr via the map
7 that sends x; to x;_1 and y; to y;_1. Indeed, the map 7, : F;[n] — F; that sends x;
to x;_, and y; to y;_, is an isomorphism and as such all F;[n] are isomorphic to F,
and therefore have the F., property.

Lemma 5.1.3. The subgroup K C F is isomorphic to the ascending HNN extension Fr[1]*; -1,
where vy maps x; to x;_1 and y; to y;_1.

Proof. From the definition of an ascending HNN extension 5.1.2 we can see that L =
Fe[1]%;,1 = (F[1],t[txjt™1 = x;49,ty;t™1 = y;41). For any element f in F[1],
we may write it in its normal form (inherited from the normal form of F;), then
conjugate it by ¢t. This is the same as conjugating all of the generators that make
up f by t. As the conjugation of a generator by f is defined, the conjugation of any
element of F.[1] is defined.

We claim that the following map is a group isomorphism
$: FT[l]*mq — K
X —xVi>1
Yi—=Yi Vi>1
t— xg

(5.2)

We can immediately see that ¢ is surjective, as it maps onto every generator of K.
Furthermore, the HNN relations tx;t”1 = x;41,ty;t"1 = y;; are recreating the re-
lations x;xg = xox;11 and y;xo = xoyi+1 from K, and all other relations of K are the
same as those inherited from F;[1]. Hence ¢ is a group homomorphism. All that
remains to be shown is that ¢ is injective.

To show ¢ is injective, we will begin by noting that F[1] is a subgroup of L, and thus
any element of F;[1] C L can be written in the normal form inherited from F;. Now
consider an element w € ker(¢) C L. As L is an HNN extension, we may write w in
the form

w = got' g1t .gn—1t""1gn

where g € F¢[1] and €; € {£1}. Using the HNN relations for L, we can rewrite w by
using the following two relations
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/

git 1 =t 1glfor some ¢} € Fy[1]
tg; = gitfor some ¢! € F¢[1]

Through these relations we may rewrite w into the form w = t~g’t’ where ¢’ €
F.[1], a,b € Z>o. Now consider ¢(w) = ¢(t~*)p(g")p(t’). By assumption, w €
ker(¢) and therefore ¢p(w) = 1. Suppose ¢(w) is in normal form. Then g’ =1,a = b
and therefore w = 1. Now suppose ¢(w) is not in normal form. We may rewrite
¢(w) as x3¢p(g)x, . Using the xq relations we may shift the x,? to the left of ¢(g).
This leaves us with ¢(w) = xoa — bp(g[b]), where g[b] is ¢ but with each x; and y;
is replaced with x;,j, and y;,} respectively. This is now a normal form. As such, we
can conclude a = b and g[b] = 1. g[b] = 1 immediately implies ¢ = 1. As such
w = 1 and thus each w € ker(¢) is the trivial element and ¢ is injective. Hence ¢ is
an isomorphism. O

Here, we wish to cite the work of Bieri, Geoghegan and Kochloukova, which will
allow us to leverage our representation of K as an ascending HNN extension into a
method of calculate the BNSR invariant.

Citation 5.1.4. ([BGK10], Theorem 2.1) Let G decompose as an ascending HNN extension
Hxy 4. Let x be a character such that x(H) =0, x(t) = 1.

1. If H is of type F,, then [x] € £"(G).
2. If H is of type FP, over a ring R, then [x] € £"(G; R)
3. If H is finitely generated and y is not surjective, then [—x| ¢ Z1(G)

For Thompson’s group F, Bieri, Geoghegan and Kochloukova are able to show that
F can be written as an ascending HNN extension with base group F[1] (defined anal-
ogously to F[1]) and so are able to use 5.1.4 to determine the BNSR invariant of F
directly. Our goal is to instead use 5.1.4 to determine properties of the BNSR invari-
ant of K, then use 1.4.1 and 1.4.2 to imply properties about the BNSR invariant of
F..

5.1.3 Calculating the Invariant

Theorem 5.1.5. Given F; with the presentation 2.4, and the characters xo, x1 € Hom(F¢,R)
such that xo(xo) = 1, xo(x1) = 1and x1(x0) = 0, x1(x1) = 0, then the BNSR invariant
of F; is as follows

1. 2Y(F;) = 2Y(F, Z) = S(F) \ {[—xo), [-x1]}
2. 22°(F;) = ®°(F, Z) = X2(F;) = ZY(F;) \ {—axo — bx1]|a, b > 0}

The proof for 5.1.5 will be broken down into 3 main parts. These sections of the
proof relate to 3 groupings of points of S(Fr): The single points [xo], [x1], [—xo] and
[—x — 1] (discussed in 5.1.6; the set of points {—axo — bx1]|a,b > 0}, described as
the short interval (discussed in 5.1.11); and the set of points {axo + bx1]|b > 0} U
{axo+bxi1]la > 0}, described as the long interval (discussed in 5.1.8).

One more useful tool for calculating the BNSR invariant of F is the automorphism
u : Fr — F;, where for f an element of F; considered as a PL-homeomorphism,
u(f) is f conjugated by the function ¢+ — 1 —¢t. By inspection, we can see that

p(f)'(0) = f/(1) and u(f)'(1) = f'(0) forall f € Fr. As such, xo(f) = x1(p(f)) and
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X1(f) = xo(u(f)). We may use automorphisms in conjunction with BNSR invariants
in the following way

f e ZN(Fy)
— u(f) € 2V (u(Fy)) (5.3)
< u(f) € ZN(Fy)

We will refer to the automorphism y and its application to BNSR calculation as u
symmetry, and it is analogous to the v symmetry used by Bieri, Geoghegan and
Kochloukova for F ([BGK10], Section 1.4).

Lemma 5.1.6. Let xo and x1 be as described in 5.1.5. Then

[xo), [x1] € % (Fr)and[—xo), [~ x1] & Z' (Fy)
[x0l, [x1] € 2% (F; Z)and[—xol, [-x1] & £ (Fr; Z)

Proof. By inspection of 2.5, we can see that x/(0) = y/(0) = 0 for all i > 1. As such,
we can see xo(F[1]) = 0. Similarly, we can see that xo(xo) = 2. Assuch, 2xoisa
character such that xo(F¢[1]) = 0 and Jx0(x9) = 1. From 5.1.3 we know that the
subgroup K is isomorphic to the ascending HNN extension Fr[1]x, -1 with ¢ being
mapped to xo by the isomorphism. From this we may apply 5.1.4 to determine that
[x0] € X®(K), as F;[1] has the F,, property. We may also determine that [—xo] ¢
Sigma'(K), as y~! is not surjective on F;[1]. We can then use 1.4.1 to determine
[x0] € Z*(F;) and [—xo] € Sigma'(F;). An application of u-symmetry then gets us
[x1] € Z°(F;) and [—x1] & Sigma'(F;). We may then use the relations between the
homotopical and homological BNSR invariants discussed in 1.3.2 to conclude that
[xol, [x1] € Z%(F; Z) and [—xo], [-x1] & Z'(Fr; Z).

As a brief corollary, we may apply 1.4.1 and 1.4.2 to determine that Sigma" (K) must
have the same shape as X"(F;) in particular concluding that [x;] € X£%°(K) and
[—x1] & Z1(K), as well as that [xo], [x1] € Z°(K;Z) and [—xo], [-x1] € Z}(K;Z).

O

For the next section of the proof, we will need to cite another result of Bieri, Geoghe-
gan and Kochloukova relating to HNN extensions

Citation 5.1.7. ([BGK10], Theorem 2.3) Let G decompose as an ascending HNN extension
Hxgs. Let x : G — R be a character such that x|y is non-trivial. If H is of type Fe and
(XIn] € Z%(H), then [x] € 2%(G).

Lemma 5.1.8. Let xo and x1 be as described in 5.1.5. Let x be an arbitrary character in
Hom(Fr,R). Then

x € {axo+bxi|b > 0} U{axo+bxila >0} = [x] € Z°(F¢)

x € {axo+bxi|b >0} U{axo+bxila >0} = [x] € X*(F; Z)

Proof. We begin by considering a character x € Hom(K,R) and H = F[1] as a
subgroup of K. We claim that x(x1) > 0= x|y € [x1] € S(H). From 1.4.4 we know
that ix : Hom(F;,R) — Hom(K,R); x — x|k is an isomorphism of vector spaces,
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and thus we may write any character x € Hom(K,R) as x = axolx +bxilx, a,b € R.
Consider xg = axo|g + bx1|n- As discussed in the proof of 5.1.6, xo|g is trivial. Thus
X = bxi|g. This means that for x € Hom(K,R), x_H € [x1|g] or x_H € [—x1|n].
As x1 is defined such that x1(x1) = 1 any x such that x(x1) > 0 must be in [x1|n] by
the definition of the equivalence class [x1|n]-

We now recall that H = F;[1] is isomorphic to F via the isomorphism -y : F;[1] — F-
that maps x; to x;_1. This induces the homeomorphism y* : S(F:[1]) — S(F;) onto
the character spheres, which sends [x1|n] to [x1]- As [x1] € Z°(F¢), [x1|n] € Z*(H).
We can now apply 5.1.7 to conclude that x(x1) > 0 = [x] € Z*(K). Applying 1.4.1
gets us x(x1) > 0 = [x] € £®°(F;). Thus we can see that x € {axo+ bxi]|b > 0} =
[x] € Z%(F).

From here, we may apply y symmetry once again. The homeomorphism p* : S(F;) —
S(Fr) induced by the automorphism p will map the half-circle interval {[axo +
bx1]|b > 0} to the half circle interval {axo + bx1]|a > 0} and thus we can conclude
X € {axo+bxi]la > 0} = [x] € £%(F), thus proving the lemma for the homotopi-
cal BNSR invariant. We may apply this to the homological invariant by once again
using the relations from 1.3.2. O

All that remains to be determined of the BNSR invariant of F; (both homotopical
and homological) is the short interval of characters of the form —axo — bx1];a,b > 0.
In order to perform this last part of the calculation, we will need to cite two more
results from Bieri, Geoghegan and Kochloukova.

Citation 5.1.9. ([BGK10], Corollary 1.2) The kernel of a nonzero discrete character x has
type FP, over the ring R if and only if both [x] and [—x] are in 2" (G, R).

Citation 5.1.10. Suppose G is a group that contains no nonabelian free subgroups and is of
type FP, over a ring R. Let ¥ : G — R be a nonzero discrete character. Then G decomposes
as an ascending HNN extension Hx;, where H is a finitely generated subgroup of ker(X)
and X (t) generates im ().

Lemma 5.1.11. Let R be a ring, then x € {—axo — bxi]|a,b > 0} = x & 2(F; R).

Proof. Initially, we can see that the discrete characters are dense in the short interval
and, as the interval is open (since it is missing the end points [—xo] and [—x1]), we
only need to show that the discrete characters are not in ZZ(FT; R) (see for example,
[BGK10], Proposition 2.9). Take a discrete character x € Hom(F;,R) written in the
form x = axo+ bx1 witha, b € Q\ {0}. Using the elements f, g € F from the section
5.1.1, we can an element f € F; such that

Xo(t) = mbxi(t) = —ma

for some m in Q \ {0}. This gives us that x(¢) = 0. Since x has a discrete image in R
and a # 0, we have that there must exist a to such that |xo(to)| is minimal among all
elements of F; that fulfill the properties of t. In particular, xo(t) is nonzero.

Let G = ker(x). Since the abelianization of F; is Z> @ Z /27, we have that G =
(VF., to) = sqrtF, x (ty), where sqrtF. := {f € F;|f" € F.for some n}. By in-
spection, we can see that x| is a discrete, nonzero character that is trivial on the
subgroup sqrtF} (as all characters are) and that im (x| G) is generated by xo(to), since
|x0(to)| is minimal among .
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Suppose that G has type FP, over a ring R. By 5.1.10, we may decompose G as the
HNN extension Hx;,, where H is some finitely generated subgroup of \/F.. As H
is a subgroup of \/F,, we know that all elements / in H must have that xo(h) =
0, x1(h) = 0. As such, the slopes /'(0) and #'(1) must be 0. That is to say that
no elements of H have support in some region around 0 and 1. As H is finitely
generated, there is a generator /1y of H such that hg has a break point with minimal
value (ie: closest to 0) among all elements of H. Similarly, there must also exist a
generator /11 with a breakpoint of maximal value (ie:, closest to 0). As such, there
exists a value €” such that all elements of H are supported in the interval [¢”,1 — €”].
Similarly, we know ty is an element of F+, so by the definition of F; given in 2.3.1, ¢
has finitely many breakpoints. As such, there is a value €’ such that all breakpoints of
to are in the interval [¢/,1 — €’], and so ty is linear on the intervals [0, €'] and [1 — €/, 1].
Take € = min{e’,e”}. By construction, H is supported on [¢,1 — €] and f is linear
on the intervals [0, €] and [1 — €, 1].

Since we have \/F. x (tg) = G = Hx;,, we can say that \/F. = Ups1 t"HE". As
such, for each f € /F., there is some 1 such that t " ft" is in H. Hence t " ft" is
supported in the interval [¢, 1 — €]. From here, we can see that any f in /F, must be
supported in [t} (€), t} (1 — €)] for some n. As \/F. has support in (0,1), there must
be a subsequence of {{(€)},en that converges to 0, and similarly there must be a
subsequence of {t{(1 — €) },en that converges to 1. However, we know t is linear
outside the interval [¢,1 — €]. As such, in order for {t(€) } sen to approach 0, ty(e) <
€ and so t{; < 1 on the interval [0, €]. Similarly, for {t{j(1 — €)},en to approach 1, we
must have to(1 —€) > 1 — e and so t; > 1 on the interval [1 — ¢, 1]. Hence, for our
discrete character x = axo + bx1, we must have ab < 0. We concluded this after
assuming that G has type FP, over a ring R. This leaves us with the implication

X =axo+bxi, a,b € Qandker(y)is of typeFP, = ab < 0

The contrapositive of this states that for a discrete character x = axo + bx1, ab >
0 = ker(x) is not of type FP,. By 5.1.9, this means that either [x]| or [—x] is not in
¥2(F;; R). However, we already know from 5.1.8 that x = axo + by is in Z*(F; R)
for a,b > 0. Hence, x = axo + bx1 is not in ¥2(F; R) for a,b < 0.

We may refer back to the relations between homotopical and homological BNSR
invariants in 1.3.2 to exclude these characters from ¥?(F;) as well. O

Between the three lemmas 5.1.6, 5.1.8 and 5.1.11, the only point of ambiguity is
whether points on the short interval are in >l (Fr). However, we may cite Bieri and
Strebel’s work on groups of PL-homeomorphisms. In particular, ([BS16], Chapter
IV, corollary 3.4) tells us that for any group of PL-homeomorphisms G, £!(G) =
S(G) \ {[xol, [x1]}, where xo and xi are the characters that measure the slope at 0
and the slope at 1, respectively. This tells us that the ambiguous short interval char-
acters are in X! (F;). Combining this with our three lemmas is our proof of 5.1.5.

5.2 BNSR invariants via Morse Theory

5.2.1 Abelianizations and r for Bieri-Strebel Groups

In order to calculate the BNSR invariants for quadratic Bieri-Strebel groups, we must
first determine the equivalence classes of characters in S(Fg). The easiest way to do
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this is to find a spanning set of characters for Hom(Fg,R). Once we have a span-
ning set, we may express each character of Hom(Fg,R) as a linear combination of
our spanning characters, and then intersect Hom (Fg, R) with a sphere of any radius
around the origin to find class representatives for the equivalence class of S(Fg).

Considering the characters of F,, discussed in 2.1.4, we would like to apply similar
methods of constructing characters to quadratic Bieri-Strebel groups. For the ini-
tial step, we may simply cite Bieri and Strebel’s work on groups of piecewise-linear
homeomorphisms. In particular, ([BS92], Chapter IV, Lemma 3.1) indicates that all
quadratic Bieri Strebel groups have xo(f) = In(f'(0)) and x1(f) = In(f'(1)) as
linearly independent characters in Hom(Fg), R.

Our next step is to show that characters similar to the ¢ characters described in 2.1.4
can be constructed for quadratic Bieri-Strebel groups with well defined tree-pair rep-
resentations. To begin, we can see that the group Fg with subdivision polynomial
ax? + bx; will have a + b — 1 orbits of breakpoints. We make a similar argument to
that for F,, as illustrated in 2.5. Any caret in the caret set C[; will have a + b legs, and
so the addition of any caret to tree in a tree pair for Fg will add a + b — 1 leaves to the
tree (as it replaces 1 leaf with a 4 b leaves). While the legs of different length might
initially appear to split these orbits into smaller orbits, they provide no obstruction.
Each breakpoint b sits in Z[f], and so can be expressed in the form X ;a,p". We
begin by considering a;. If a; is greater than the number of legs of length 1 in a caret
of Cg then we may rewrite b by using the identity f = ap® + bp? until it is less than
or equal to the number of legs of length 1. We may then use a right hand caret (ie: a
caret with all long legs on the right) as the top caret of a tree constructed to include
b as a breakpoint. We then attach a right caret to the a; + 1th leg of the top caret
and repeat this process with a,. Repeating this process n times will construct a tree
with b as a breakpoint. The argument from here is entirely analogous to the F,, case,
allowing us to conclude there are a + b — 1 orbits of breakpoints for the group Fj.
Note that this result can also be found in ([Win], Theorem 4.8.6).

Having established that the group Fg has a + b — 1 orbits on the breakpoints Z[g] N
(0,1), we may define characters similar to the ¢ characters defined for F,, in 2.1.4. We
define the character ¢;, i € 1,...,a+ b — 1 in the following way: Let X; be an orbit
of breakpoints of Fg in Z[B] N [0,1], with x € X; a breakpoint. For f € Fg, we may
consider v, (f) = logg(fL(x)) —logg(fL(x)), where f. (x) is the slope immediately
to the right of the breakpoint x and f~ (x) is the slope immediately to the left. We
then define the character ;(f) = Zyex,7x(f)-

Considering xo, x1 and the ¢; together, we now have a + b + 1 characters for Fg.
However, we do not expect these characters to be linearly independent. In fact,
we can demonstrate a linear dependence between them. Each 7, (f) measures the
change in slope of f at the breakpoint x (expressed additively), and hence ;(f)
expresses the net change in the slope of f across all breakpoints in the orbit X;. We
can therefore see that the sum Zfilb “1y;(f) will measure the net change in the slope
of f over all breakpoints. As f is piecewise linear, we know the slope can only change
at breakpoints, so the total net change in the slope of f between 0 and 1 is measured
by 240~ 1y,;(f). This means we can write the linear dependence as X/~ 1y;(f) =
x1(f) — xo(f). Removing any one character from our set of a + b + 1 characters (we
will typically choose 1,j_1) will leave us with a linearly independent set of a + b
characters.
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We now wish to show, where possible, that ro(Fz) = Z+P. When this is the case,
then we know from ([BS92], Chapter I, Lemma 1.1) that Hom(Fﬁ, R) = R**? and is
therefore spanned by our linearly independent set of a + b characters. To begin, we
may cite a result of Winstone regarding abelianizations of Bieri-Strebel groups.

Citation 5.2.1. ([Win], Theorem 4.8.11) For a quadratic bieri-Strebel group Fg with subdi-
vision polynomial 2nx* + (2n 4 1) — 1, we have that Fg , = Z*"' © Z./ (n +1)Z.

This indicates that there are quadratic Bieri-Strebel groups where ro(Fg) = Z°t0.
For these groups, we have a spanning set for Hom(Fg, R). We wish to generalise this
result, and it is possible as, unlike Winstone, we are not interested in calculating the
full abelianization, only the torsion free part. We wish to use Winstone’s presentation
2.3.7to determine o (Fg).

Instead of working within the abelianization, we wish to instead apply a generic
character x to all elements, then analyse the group relations in order to determine
the size of rp. The advantage of this approach is that, as x(f) € RYf € Fz, we may
apply the tools of linear algebra when examining the relations. For example, the
group Fr has the relation y3 = xox;. Taking an arbitrary character of both sides of
this relation gives us 2x(yo) = x(x0) + x(x1). As both sides of the equation are just
real numbers, we can divide through by 2 to determine that x(yo) = w As
such, we know that the value of x(yo) can always be determined from the values of

X(x0) and x(x7). Therefore, we do not need y to generate ro(F;).

Examining Winstone’s relations from 2.3.7, there are two types of relations. We first
examine the R relations of the form

fi&i = Sifi+varv—1f,§ €x,2,j > i

Applying an arbitrary character to both sides of the relation will get us xfj) +
x(8i) = x(&i) + X(fij+atp—1). Subtracting x(g;) from both sides will leave us with
the relation x(f;) = X(fjta+b-1). As we require j > i i,j > 0, this implies that for
k>a-+b,thereisal € 1,..,a+b—1such that x(xx) = x(x;) and x(zx) = x(z)-
As such, the character values of all elements of Fﬁ can be determined wholly from
the character values of the elements {x, zo, X1,21, -, Xa45—1,Za1p_1}- From this, we
know that ro(Fg) = Z*, where k < 2(a + b).

We now examine the R; relations. While the infinite presentation of the group has in-
finite R, relations, we may reduce this down to those concerning the set of elements
{x0,20,%1,21, -+ Xa1b—1, Za+b1}- For example, the relation y? = xx; is an R; relation
in F;. Taking the character value of both sides we get 2x(y1) = x(x1) + x(x2). How-
ever, we know that )((xl) = x(x2) from the R; relation x1x9 = xox2. Hence we can
rewrite the R; relation as 2x(y1) = 2x(x1), eliminating the x, term.

Generalising this to Fg gives us a + b unique R; relations with elements from the set
{X0,20,%1,21, -+, X451, Zarv—1}- We write these relations out as
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X(xa) + x(xa+1) + o + x(%22) + x(x0) = 2x(20) + x(21) + - + x(2a-1)
X(xag1) + x(Xa42) + oo + X (x2041) + x(x1) = 2x(21) + x(22) + ... + x(2a)

X (Xagp—1) + x(x1) + o 4+ x(x0) + x(xp-1) = 2X(20—1) + X(2p12) + ... + x(21)
X(xa-1) + x(xa) + o + X (%20-1) + X (Xavp-1) = 2X(Zarp-1) + x(21) + - + X (Za-1)

(5.4)

This leaves us with a system of linear equations, which we may approach using
linear algebra. In particular, as all terms involving x; generators are on the left of the
equations, and all terms involving z; are on the right, we may form the vectors

x(xo0) X (z0)
e= | x| x(=z)
X(xa.;bfl) X(Za.;hq)

which we can then use to write the system of equations as the matrix equation

Ax = Bz
If either A or B is invertible, then we may solve this matrix equation to determine
each x(x;) solely in terms of x(z;), or each x(z;) solely in terms of x(x;). This would
reduce the generating set for ro(Fg) such that ro(Fg) = Z*™". Based on the equations
in 5.4, we can form the matrix B as the following (a + b) x (a + b) matrix

2 1 1 0 0 0
02 1 ... 1 0 0
B=10 0 0 2 1
01 0 201 1
o1 ... 1 0 ... 0 2

Where the number of entries equal to 1 in each row is equal to 2 — 1. We are primarily
concerned with whether B is invertible, and as such, whether det(B) # 0. We may
calculate the determinant of B down the first column, which is empty except from
the 2 in the first row. As such, the determinant of B is just 2 x det(B’), where B’ is the
following (a +b —1) x (a4 b — 1) submatrix of B
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2 1 ... 1 0 O 0
0 2 1 1 0 0
B=]l0 ... 0 2 1 1 ...1
1 0 0 2 1 1
1 ...1 0 0 ... 0 2

In order for B’ to be invertible, we require its rank to be a + b — 1. Fortunately, B’
fits into a classification of matrices that have a known method for determining their
ranks.

Definition 5.2.2. An n X n matrix A is a circulant matrix if the ith row is the first
row with the entries transposed i — 1 columns to the right. In particular, for a set of
values {cy, ..., ¢,—1}, a circulant matrix is a matrix of the form

Co Cn—1 .. C2 (o5}
€1 €1 Cp—1 (6]
€1 €o
Cn—2 R B Cn—1
Cn—1 Cn—2 ce C1 Co

For the circulant matrix A with entries {c, ..., c,_1}, we define the polynomial f4(x) =
co 41X + oo+ cpogx™ L

Citation 5.2.3. ([Ing56], Theorem 2.1) The rank of an n X n circulant matrix A with entries
{co,...,cn—1} is equal to n — d where d is the degree of the polynomial fa(x),x" —1}. In
particular, if these two polynomials are coprime, than A is invertible.

The factors of x”* — 1 are all cyclotonic polynomials so, in order to show B’ is invert-
ible, we wish to show fp/(x) has no cyclotonic factors. There are two very simple
cases we can show immediately. For Fg with subdivision polynomial ax? + bx — 1,
ifa =1, then B’ is just 21 for I the (a + b) x (a + b) identity matrix. This is clearly
invertible, and checking via the polynomial confirms this as f,; = 2, which clearly
has no cyclotonic factors. We may perform a similar analysis for 2 = 2, for which
fp(x) = x""1 +2. The roots of this are clearly the n — 1th roots of —2. As such,
x"~1 4 2 shares no roots with x" — 1, so cannot share any factors.

We can generalise this one more time to 2 = 3. For an Fg with 2 = 3, we have that
fgr = x"1 4 x"72 + 2. We wish to show this is coprime with x" — 1. The roots of
x" — 1 are all roots of unity, which can all be considered as complex numbers v with
|o| = 1. For any v to be a root of x" ! + x"~2 4 2, we must have that v" ! + v" 2 =
—2. As we know |v| = 1, this is only possible if v"~! = v"~2 = —1. However, this
immediately creates a contradiction as we get v" ! = v x v"~2 = v"~2 which implies
v = 1. Butif v = 1 then v¥ = 1 for all k, and thus "' # 1, "2 # 1. Hence no
root of unity v is a root of x"~! + x"~2 + 2 and thus x"~! + x"~2 4 2 is coprime with
xt—1.

Finally, there is another case we can consider, which is the case when a +b — 1 is
prime. First, we note that (x — 1) is never a factor of fp.. All coefficients in fp are
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positive, so fp(1) > 0 (in fact, fz:(1) > 2, as the constant coefficient is always 2). As
such, we may consider the polynomial

x"—1

=x" 1" 2 +x+1
x—1

When n — 1 is prime, then ’;":11 is a cyclotomic polynomial, and therefore irreducible.

a1 s s : : _ x"-1 x'—1 ;
If 2= is irreducible, then either fp = *—=, or fp and % — are coprime, but we can

see fp # ’i 1:11 as fp always has a constant coefficient of 2 and
constant coefficient of 1. Therefore, J;n__ll

x"—1
+—1 always has a

and fp must be coprime.
Combining the above with 5.2.1 gives us the following lemma:

Lemma 5.2.4. For Fg a quadratic Bieri-Strebel group with subdivision polynomial ax* +
bx — 1. IF we have one of the following criteria:

* a=2n,b=2n+1 forsomen

e g=1,20r3

* a-+b—1isaprime number
Thenro(Fg) = a +b.

This combines with our knowledge of characters for Fg to grant us a spanning set
for Hom (Fg, R).

Lemma 5.2.5. Take Fg as in 5.2.4, with {Xo, ..., Xqp—1} the set of orbits of Fg on break-
points of (0,1). Then the set of characters { xo, X1, $0, ---, Yarp—2} is a linearly independent
spanning set in Hom(Fg, R), where the characters are defined as follows:

* Xo(f) = logp(f'(0)), xa(f) = logp(f'(1))
* $i(f) = Zaex;vx(f), where 72 (f) = f2(x) — f<(x)

5.2.2 Preliminary Results

The remainder of this chapter will be dedicated to calculating the BNSR invariant
for quadratic Bieri-Strebel groups Fg with subdivision polynomial of the form X2 +
ax — 1. In order to calculate the BNSR invariant for Fg, we will use the complex X’
discussed in 3.2. We discussed the shape of links for this space in 3.2.6. In simple
terms, the descending link of a forest tree pair [F, T] is a simplicial flag complex with
a vertex for each distinct set of k consecutive trees in F, and any 2 vertices have an
edge between them if there if their associated sets of trees have trivial intersection.
As before, the forest F for any forest-tree pair [F, T] in X will be composed entirely
of x-carets, or carets that have all legs of length 2 on the left of the caret.

In order to apply Bestvina-Brady Morse theory to the rest of our calculation, we
must understand the links of a 0-cell in our complex. From our definition of the
complex in 3.1.2, we know that any 1-cell adjacent to a 0-cell represents either a basic
expansion or basic contraction of the forest-pair associated with the 0-cell. When we
define our Morse functions according to 4.1.2, we will use either ¢(x) or —f(x) as our
secondary function, where ¢(x) counts the number of trees in the forest of the forest
tree pair associated to the 0-cell x, and is affinely extended to all other cells. As such,
it is helpful to consider the ascending and descending links with regards to these
functions. The ascending link with regards to f(x) consists of all basic expansions
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of x, and the descending link consists of all basic contractions. When using —#(x),
these links are identical, but swapped.

Considering the ascending link of x first, we can refer to 2.2.6 to conclude that, as
the cell above a 0-cell x is an n-cube for n = t(x). From the definition of a link, we
can say that the ascending link is the intersection of this cube with a sphere of radius
€ < 1 around x, which is an n — 1 simplex, and thus contractible.

We now consider the descending link of x. The structure of our space means that
this ends up being similar to the matchings set up by Zaremsky in ([Zar17], Chapter
5). As such, our connectivity argument is similar to ([Zar17], Lemma 5.2).

Lemma 5.2.6. The descending link of a point x with 2(n + 1)k — n trees in the forest of the
associated forest tree pair is n-connected.

Proof. From 3.1.12, we know that a set of simple contractions in the descending link
of a point x are connected if the contractions themselves are disjoint. We argue that a
descending link for a point x with 3k — 1 trees is connected in the following way. We
consider the leftmost set of k consecutive trees and the rightmost set of k consecutive
trees. Each of these sets has a single contraction associated with it. As the number
of trees in the forest is greater than 2k — 1, these two sets of trees are disjoint. Thus,
the contraction across the leftmost set of trees is adjacent to the contraction on the
rightmost set of trees.

Suppose now that there exists a set of consecutive trees that intersects with both the
leftmost set of trees and the rightmost set. As our forest is 3k — 1 trees, there are k — 1
trees in the centre of the forest that do not belong to either the leftmost set of trees or
the rightmost set of trees. Any set of consecutive trees that intersects with both the
leftmost set and the rightmost set would have to contain all of these trees, along with
at least one tree from the leftmost set and one tree from the rightmost set (otherwise
it wouldn’t intersect with those sets). That means such a set must contain at least
k + 1 trees. As such there are no sets of k consecutive trees that intersects with both
the leftmost and rightmost set. Put another way, every set of k consecutive trees
is disjoint from either the leftmost set or the rightmost set of k consecutive trees.
Because of this, the contraction over a given set of k consecutive trees is adjacent
to the contraction over the leftmost set, or it is adjacent to the contraction over the
rightmost set.

We can now demonstrate the descending link is connected in the following way. For
any two points in the descending link (representing two contractions of sets of k
consecutive trees), we know that each of those two points must be adjacent to either
both contractions of the leftmost set, or both contractions of the rightmost set. We
also know that each contraction of the leftmost set is adjacent to both contractions of
the rightmost set. As such, there are three possibilities for a path between two given
points A and B in the descending link.

* Both A and B are adjacent to the contraction L of the leftmost set: the path is
A—L—B.

¢ Both A and B are adjacent to the contraction R of the rightmost set: the path is
A — R — B.

¢ one of A and B is adjacent to L and one is adjacent to R: WLOG, assume A is
adjacent to L. The pathis A - L — R — B.
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From here we can generalise by referring to ([Zar17], Lemma 5.2). Having demon-
strated that our descending links have the same structure as Zaremsky’s matching
complexes, we may cite his result on connectivity. This gives us that the descending
link of a forest with at least (3k — 1) + (n — 1)(2k — 1) trees is n-connected. We can
simplify this to (2n + 1)k — n. O

5.2.3 xoand x;

We first consider the characters —xo and — 1, where xo(g) = log-(¢’(0)) and x1(g) =
log-(g'(1)). This section will be dedicated to proving the following lemma:

Lemma 5.2.7. [—xol, [—x1] & Z'(Fp).

Note that T < 1, [—)xo] contains the character do(g) = ¢'(0) and [—x1] contains
d1(g) = ¢'(1). In order to use these characters on the complex X (or any similar com-
plexes), we must introduce height functions that are equivariant to these characters.
This is relatively straightforward. When working with tree pairs, the character dy is
proportional to the difference between the depth of the leftmost leaf of the left tree
and the leftmost leaf of the right tree. Similarly, d; is proportional to the depth of the
rightmost leaf of the left tree and the rightmost leaf of the right tree. We can extend
this to the set of forest-tree pairs by applying the exact same logic, subtracting the
depth of the leftmost leaf of the tree from the depth of the leftmost leaf of the forest
will get us a height function equivariant with a character in [— o], and subtracting
the depth of the rightmost leaf of the tree from the depth of the rightmost leaf of the
forest will get us a height function equivariant with a character in [—x;]. We label
these height functions /g and h; respectively.

We wish to work within a finite index subgroup of our group Fz and then apply 1.4.1
in order to calculate the invariant for Fg. We consider the presentation given in 2.3.7
when a = 1. In particular, the presentation reduces to contain two kinds of relations.

* bja; = aibj iy, fora,b € {x,y},i <j

* YilYir1 =X+ i’
This observation also appears in ([Bro18], section 6.1). As such, we have Kz C Fg
such that K = (xq, x1, ..., Y1, Y2...), as in 5.1.2. We may consider the space Xg as the
maximal subspace of X consisting of vertices whose forest-tree pairs may be ob-
tained from elements of K via a sequence of basic expansions (and forest-tree equiv-
alences). In practice, this gives us forest-tree pairs with no y-carets on the leftmost
branch of either the forest or the tree. Based on the normal form presented for Fg
in ([Bro18], Section 7.2), we may construct elements of Fz (and therefore elements
of K) such that there are no right handed carets in the left tree of the tree pair. Any
expansions of these normal form trees will therefore only have left handed carets in

the forest. For each equivalence class of forest-tree pairs, we will choose a reduced
representative that has the following properties:

¢ The reduced representation will only have left-handed carets in its forest.

¢ The reduced representative will have a minimal number of carets with regards
to the first property.

We can reduce the characters we need to consider by using p-symmetry as in 5.1.3.
As there is an automorphism of each F4 that maps —xo to —x1 (and vice versa), —xo
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and —x1 will have the same placement in the BNSR invariant. Thus, we only need
to calculate the position in the invariant for — xo.

We will now consider the space Yx = Xikilgt(x)gak*z, with the Morse function

(ho,t). Under this function, the ascending link will consist of any basic expansion
on any tree in the forest except the leftmost (though only on vertices x such that
t(x) = 2k —1. When t(x) = 3k — 2, a basic expansion will lead to an x” where
t(x’) = 4k — 3, and thus «’ is not in Yk), along with basic contractions on the left-
most set of k trees (which are only in Yk if #(x) = 3k —2). On any point x € Yk,
there is either a basic expansion or a basic contraction in the ascending link. Thus
the ascending link is nonempty.

We now wish to show Y,i’ 29, For this we wish to follow the process established by
Witzel and Zaremsky in ([WZ15], Section 5). As such, we will need to make use of
the following result.

Citation 5.2.8. ([WZ15], Proposition 1.8) Let an (m — 1)-connected affine cell complex X
be equipped with a Morse function (h,s) : X — R x R and assume that all ascending links
are (m — 2)-connected. Then the filtration {X"='}cR is essentially (m — 1)-connected if
and only if X"ZP is (m — 1)-connected for some p, if and only if all x"=¥" are each (m — 1)-
connected for all p'leqp.

As we have already established that the ascending links in Yx are nonempty, or
—1-connected, we may use this lemma to determine that the complex YIIZO>O is not
essentially connected if and only if Y£°>l is not connected for some /. As the action
of Fg is transitive, this reduces to showing that Y£°>0 is not connected.

Take a vertex yin Yy X0>0 and define L(y) as the depth of the leftmost leaf of the tree
of y, when y is considered by its reduced representative. Since we are in K, all carets
on the leftmost branch of the tree of y are left-handed, and thus this is just 2 times
the number of carets on this branch. Now consider a vertex i’ adjacent to y. We wish

to show that is y is adjacent to y’ in Y£°>O, then L(y) = L(y').

Firstly, in any case that does not expand or contract the leftmost tree of the forest of
Y, no redundant carets will be introduced on the leftmost branch of Y either before
or after the basic expansion or contraction, so we only need to consider a basic ex-
pansion or contraction of the leftmost tree. Suppose we perform a basic expansion.
The only reason we would need to introduce a redundant caret is if the leftmost tree
of the forest is trivial. However, as we are in YI’}>O, we know that the depth of the
leftmost leaf of the forest must be greater than the depth of the leftmost leaf of the
tree. We also know that the tree y € Y1}<ZU>O cannot be trivial, as t > 2k — 1. Thus
the depth of the leftmost leaf of the tree must be greater than 0, so the depth of the
leftmost leaf of the forest must be greater than zero, so the leftmost tree of the forest
cannot be trivial. Finally, we consider a basic contraction of the k leftmost trees of the
forest. Again, this cannot produce a redundant caret. Each reduced representative
only contains left handed carets in the forest, so we can only contract along a left
caret. Thus the leftmost caret cannot be part of a hidden cancellation (as described
in ([BNR21], section 7). Thus, if there was a possible cancellation that would imply
y was not in reduced representative form, as was previously assumed. With no re-
dundant carets to cancel, we can conclude that L(y) = L(y’) for adjacent vertices
vy € YI}<10>0. As there are clearly multiple values L(y) can take in Y£°>O, there must

be multiple connected components in YIIZ0>0, thus it is not connected.
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We can now apply 5.2.8 to conclude that y}(lo>0 is not essentially connected. As such,
[—x0] & Z}(Kg). We can use 1.3.5 to conclude that [—x] ¢ £!(Fg) and then use
p-symmetry to conclude [—x1] & X! (Fg).

5.2.4 The Long Interval

We will now apply Morse Theory to determine where the characters of the form
X = axo+ yx,« > 0or ¢ > 0 sit in the BNSR invariant. In particular, we wish to
prove the following lemma.

Lemma 5.2.9. For x of the form x = axo +yx1;& > 0o0ry >0, x € X"(Fg)Vn

We will proceed in a manner similar to Witzel and Zaremsky in ([WZ15], section
4). We begin by reducing the cases we need to consider. We do this by using -
symmetry (introduced in 5.1.3), allowing us to assume a > v, implying « > 0. We
then form the Morse function (x'(x), —t(x)), where x'(x) is the height function on
the complex X equivariant with the character x. By the definition of BNSR invari-

ants provided in 1.3.7, we need to find a complex X, such that the top half Xﬁlzo is
essentially n-connected. We shall select X,, = Xo<t<;. By 3.1.14, we know there is
an m such that X, is n connected, and by 3.1.11, the space is cocompact with regards
to the action of G. Thus, this is a suitable complex for calculating the n-th BNSR
invariant. By 4.2.2, x being in X" (G) is equivalent to the following lemma.

Lemma 5.2.10. Let x be a vertex in X,,, then the ascending link Ik 1 (x);((,n(x)’*t(x)
connected

isn—1

Proof. We first consider the 0-cells of Ik 1 (x)))((;(x)’ft(x) . These 0-cells can be created
by both simple expansions and simple contractions in the forest of x. An expansion
must strictly increase x’, as any expansion increases f and thus decreases —t. A
contraction will be in the ascending link as long as it does not explicitly decrease yx.

Now, suppose t(x) = m. Any expansions of x would lead to a vertex x’ such that
t(x") = m+1, thus ¥’ ¢ X, and so the ascending link of x must consist only of
basic contractions. Since we have « > 0, we know that any merge including the
leftmost tree of the forest of x will increase the slope at 0 and thus decrease x’ (recall
Xo = (logp(g'(0)) for B < 1). Depending on b, a merge including the rightmost tree
of the forest of x may increase, decrease or fix x’. All other merges cannot change x’
but decrease t and thus will be in the ascending link. Thus the ascending link will
consist of all contractions on the forest of m — 1 or m — 1 trees depending on b. In
either case, for sufficiently high m, this will be n connected by 5.2.6.

We now consider the case where t(x) < m — (k —1). The only possible splits in
this ascending link is the split of the leftmost tree and potentially the split of the
rightmost tree (all other splits will not effect x’ but will increase t). While every
merge of k trees is included in the ascending link apart from the merge of the k
leftmost trees (which would decrease x’) and possibly the merge of the k rightmost
trees (which will increase, decrease or fix x’ depending on 7. As the merge of the k
rightmost trees is not included, all other expansions or contractions in the ascending
link are disjoint from the expansion of the leftmost tree, thus the vertices implied by
all of these basic moves in the ascending link are all adjacent to the vertex implied
by the expansion of the leftmost tree. Hence the vertex implied by the expansion of
the leftmost tree is a cone point for the ascending link. Thus the ascending link is
contractible and therefore n-connected.
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Finally, suppose m — k < t(x) < m. At first glance, this case would be similar to
the t(x) < m — (k — 1) case, using the expansion of the leftmost tree as a cone point.
The issue is when 7y > 0, which would cause the expansion of the rightmost tree to
imply a vertex in the ascending link. In the previous case, this is fine as the edge
between these two vertices would exist by the existence of the point x’ € X}, reached
by performing both basic expansions in either order. However, if t(x) = m — (k— 1),
then t(x’) > m, and therefore x’ ¢ X,,. However, the edge between these two vertices
is the only edge that can’t be included. So, we consider the contractible space L’
where we cone off the space using the vertex from the expansion of the leftmost tree,
then form the ascending link of x from L’ by removing this edge along its relative
link. AS this relative link is still at least n-connected, so is the ascending link of x. [

5.2.5 The Short Interval

Our next step is to determine the position of characters of the form x = axo +
YX1,;%, B < 0. Our goal is to prove the following lemma.

Lemma 5.2.11. for characters of the form x = axo + vx1,;&,7 < 0, x & X2 (Fp)
In order to do this, we will need to introduce the concept of a nerve complex.

Definition 5.2.12. ([ES52],page 234). Given an open cover C := {U;|i € I} of a
topological space X we construct the nerve complex N(C) by first taking the set of
O-cells {U;};c;. We then insert an n-cell between the 0-cells {Up, Uy, ..., U, } if the
intersection Uy (\ Uy (... U, is nonempty.

We will then use the following result of Witzel and Zaremsky in order to replicate
their method in calculating ¥2(G)

Citation 5.2.13. ([WZ15], Lemma 6.2) Let a simplicial complex X be covered by connected
subcomplexes {X;}icy. Suppose the nerve N({X;}iey) is connected, but not simply con-
nected. Then X is connected but not simply connected.

In order to demonstrate that x is not in £?(G), we will work within the subgroup Kg
once again. As a brief reminder, this is the subgroup generated by the usual gener-
ating set of Fg (as described in 2.3.7) but without the yo generator. This will result
in no right handed carets on the leftmost branch of either tree. We may use Jason
Brown’s normal form ([Bro18], section 7.2). to find a representative for each element
in K (here considered an equivalence class of tree-pair diagrams) such that the left
hand tree has no right hand carets either. As all vertices in Xk are associated with a
forest-tree pair constructed by performing a finite sequence of basic expansions on
a tree pair, then all forest-tree pairs in Xx will have only left-handed carets in the
forest.

Take the height function h equivariant to x defined as before. We now introduce
the Morse function (h,t) and restrict to Yx = Xikfzgtgék%’. We first wish to show
that all ascending links are connected. This will allow us to conclude that Yy is
connected via the Morse lemma. We first examine our character. As x = axo + bx1
and a,b < 0, we know that a merge of either the leftmost k trees or the rightmost
k trees will increase the depth of the leftmost leaf of the forest or the rightmost leaf
respectively. This will then increase /1, and thus these merges are in the ascending
link. No other merges can effect i and reduce ¢, and thus must be excluded. A split
of the leftmost or rightmost tree would reduce x and thus is excluded, but any other
split fixes h and increases t, so must be included.
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We now note that Yx contains 4 "layers" of vertices, as the number of trees in a forest
of a forest tree pair must be of the form nk — (n — 1). In, Y, this leaves the possibili-
ties {3k — 2,4k — 3,5k — 4,6k — 5}. We consider the smaller two first. as there are two
layers above these, we can perform two basic expansions and remain in Y. Any two
basic expansions are disjoint and thus adjacent in the ascending link. Furthermore,
each of the two included basic contractions (second layer only, as a basic contraction
in the lowest layer would remove us from Yx) is disjoint to at least one basic expan-
sion, as there are at least k + 2 trees in each forest for k > 2. For the top two layers,
we note that the contraction along the leftmost k trees and the contraction along the
rightmost k trees are disjoint, as 3k —2 > 2k for all k > 2. These contractions are
therefore adjacent in the ascending link. Each expansion is disjoint from at least one
of these contractions and so adjacent to it in the ascending link. Thus the ascending
link is connected.

We wish to apply the result of Witzel and Zaremsky to this complex. In order to do
so, we will split the complex into subcomplexes. For each 0-cell in Y, we shall take
the reduced representative of the forest-tree pair, by which we mean the equivalent
forest-tree pair with the smallest number of carets. On these representatives we will
define the metrics L(x) and R(x). L(x) is the depth of the leftmost leaf of the tree
in the forest-tree pair associated with x (as used in 5.2.3, while R(x) is the depth
of the rightmost leaf of the tree. We will then take the complex and divide it into

subcomplexes Ylt:(( )) ! for F € {L,R}. For example, Y (( )) would consist of all

forest-tree pairs x such that the leftmost leaf of the tree is of depth 3 and the forest
contains 6 trees.

h(x)>0

We now restrict to Yy . We can immediately conclude that this subcomplex is
connected as all ascending links inf Yx are connected. If a point x’ adjacent to x

appears in the ascending link of x, then h(x’) > h(x), thus x € Yl}é(x)zo = x €
YIIZ(X)ZO. Thus the ascending links remain connected and the Morse lemma allows us
h(x)>0

=" is connected. Our goal is thus to show it is not essentially simply

h(x)=>0

=" is not simply connected.

t(x)

, induced by our subcomplexes YF(X;‘;. We claim

to conclude Yy

connected. By 5.2.8, we only need to show that Y
hi(x)=0

We consider the nerve of Y

that each cell ¢ € YX( 20 is contained within either YL( )=i OF YR(x)—; for some i.
Take x € c as a vertex, and consider its forest-tree pair. As t(x) > 1, we know
the tree of x must be non-trivial. Therefore the depth of the leftmost and rightmost
leaves of this tree are both greater than zero. We know h(x) > 0, so the depth of
either the leftmost or rightmost leaf of the forest must be greater than 0 (potentially
both). In either case, we can make an argument similar to that made in 5.2.3 that
L(x") = L(x) or R(x") = R(x) for any vertex x' adjacent to x. Thus, the cell ¢
must be in either YL( x)=i OF YR(x x)=i . We further note that Y7 (,)—; Y ()—; = 0 and

—iNYr(x)=j = 0 whenever i 7& j, as that would imply a leftmost or rlghtmost
leaf havmg two leaf depths simultaneously, which is obviously not possible.

h(x)=>0

= is not simply connected, we
h(x)>0

In order to apply 5.2.13 and demonstrate that Y

simply need to demonstrate the existence of a nontrivial loop in the nerve of Yy
To do this, we may conceive of the following four forest-tree pairs.

® x1,such that L(x;) = 4 and R(x1) = 2.
* xp, such that L(xp) =4 and R(xz) = 3.
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* x3,such that L(x3) = 6 and R(x3) = 3.
x4, such that L(x4) = 6 and R(x4) = 2.

As the depth values on the leftmost leaves are all even, each of these are constructable
using only left-handed carets, and so are clearly in Yk, and as long as the tree in the
forest-tree pair has minimal depth on the leftmost and rightmost leaves (which is
2 in either case), each of these forest-tree pairs will be in Y};(((x)zo. Examining the
nerve, we can see that Yj )4 must be adjacent to Yr(,)—, due to the existence of
x1. Similarly, we have Y} )4 adjacent to Yg(y)—3, Y1 (x)—¢ adjacent to Yg(,)—3 and
Y1 (x)—6 adjacent to Yg(y)—p. However, as previously discussed, we have that Y; ;)_4
cannot be adjacent to Y} (,)— nor can Yg(y)—, be equal to Yg(,)—3. As such, this cre-
ates the nontrivial loop Y1 (y)—4 = Yr(x)=3 = Yi(x)=6 — YR(x)=2 — Yi(x)—4 in the

nerve of Yl}é(x)zo. We can now apply 5.2.13 in order to conclude Yllé(x)zo is not simply

connected. Hence we can conclude x ¢ X?(K). We can then use 1.4.1 to conclude
X & T?(Fp).

5.2.6 All other characters

Finally, we wish to consider other characters that can arise within the character
sphere. From 5.2.4, we expect there to be k dimensions of Hom(G, R) for each group
G we are considering. Having already discussed Yo and )i, we consider the other
class of characters in Hom (G, R). These are the ; characters discussed in 5.2.1. We
consider a character i of the form ¢ = Zi-:zl rip;, ri € R.

Lemma 5.2.14. For a character i = Zf;zlrilpi, ri € R, ¢ € Z'(Fg)Vn.

It will benefit us to be able to calculate the value of these characters from tree pair
diagrams. Consider that the ith linear piece of an element of F is represented by the
pair of leaves consisting of the ith leaf from the left tree in the tree pair and the ith
leaf from the right tree. As a leaf of depth I represents a segment of length g/, if the
left leaf has depth /; and the right leaf has depth I,, then the linear piece represented

by this pair of leaves must have slope g—ﬁ = B27h. Thus, for slope g, logs(g) =

I —I1. As B < 1, we choose instead to take logg-1(g) = l1 — I, as now a greater
value corresponds to a steeper slope. As mentioned in 5.2.1, the character ; is the
sum of the differences between these values at each breakpoint across an orbit of
breakpoints, so we will need to incorporate the slopes on either side of a breakpoint.
For this, we merely need to take two consecutive pairs of leaves and perform this
calculation for each, then subtract one from the other. For two consecutive pairs of
leaves I; and 7; (the ith leaves in the left and right tree respectively) and ;1 and ;14
(the i 4- 1th leaves), the difference in log of slope at the breakpoint between these two
pieces is just 8; = (Ij1 — riy1) — (I; — r;). Thus, the character ¢; = X{dy|1 < m <
r—2,m=imod (k—1)}.

We can generate height functions j; : X — R by considering our forest-tree pairs as
functions x : [0,t] — [0,1], where t is the number of trees in the forest of x, with
the function x being the function that corresponds to the forest tree pair just as an
element in Fg is a function with a corresponding tree pair. We can thus extend our
method for calculating the character value of an element via the tree pair onto our
space of forest-tree pairs. The important detail to consider is the effect that basic ex-
pansions and contractions will have on this character value. We first note that basic
expansions and contractions cannot change the tree of the forest-tree pair, except by
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the addition of redundant carets. Adding redundant carets cannot change the char-
acter value of a forest-tree pair. As a confirmation of this, we can observe that adding
a redundant caret to the ith leaf of a forest-tree pair will generate k new leaves (at
the cost of the original) with the first new leaf being 2 levels deeper than the original
and the rest being one level deeper. However, these leaves are being generated on
both the forest and the tree, in the same positions. Considering our calculation of
ji subtracts the leaf depth of the ith leaf of the tree from the right leaf of the forest,
the net change is always 0. Thus we only need to consider the changes to the forest
when considering the effect of basic expansions and contractions.

We can once again use reduced representatives for our equivalence classes of forest-
tree pairs to ensure that the forest contains only left-handed carets. For a simple
contraction that does not include the leftmost tree or the rightmost tree, we can see
that this will increase the depth of the first (maximal) subtree of the new tree by
2, and all others by one, without affecting any other leaves. This means that the
difference between the i — 1th leaf and ith leaf will decrease by 2. As discussed
in 2.1.4 and 5.2.1, the addition of any caret to this subtree will add precisely k — 1
leaves to the forest overall, and so the orbit of the first leaf of the second subtree will
remain stable no matter the composition of the first subtree. As the depth of this
subtree was increased by one and the first subtree was increased by 2, the difference
in depth between the last leaf of the first subtree and the first leaf of the second
subtree is increased by 1. As all other subtrees have their depth increased by one, no
other depth differences are changed until we get to the last leaf of the new tree. This
leaf has had its depth increased by one while the first leaf to the right of the tree is
unchanged (as are all other leaves outside the new tree). As such, the difference in
depth between these leaves is increased by one.

If we take I < k — 1 such thati = Imod(k — 1), then we have that j;_; is decreased by
2, and j; is increased by one. We can also conclude that the breakpoint between the
last leaf of the new tree and the first leaf to the right of the tree is in the same orbit as
the breakpoint between the first and second subtrees of the new tree. If we suppose
all the maximal subtree are trivial, then we can easily see that the first leaf is k — 1
leaves away from the last leaf (as all carets have k leaves). We can then build this
single caret tree up to any arbitrary tree containing only left carets by adding each
caret in order. We know that the addition of carets does not change the orbit of any
leaf (as we are adding a net of k — 1 leaves each time we add a caret) so no matter
the shape of the new tree, the breakpoint between the first subtree and the second
will be in the same orbit as the breakpoint between the final leaf of the tree and the
first leaf to the right of the tree. We know that the depth difference on each of these
breakpoints increases by 1, so overall j; must increase by 2.

We can use this understanding to consider what happens when the simple contrac-
tion contains the first or last tree. If it contains the first, then there is no earlier leaf to
have a difference in depth with the first leaf of the new tree, so j;, does not change.
The change in j; happens as normal. Similarly, if the last tree is included in the con-
traction, then there is no difference in depth between the last leaf of the new tree and
the first leaf to the right of it. However, we still get the difference in depth between
the first two subtrees, so we have that j;_; decreases by 2 and j; increases by 1. As
simple expansions are the inverse of simple contractions, we can calculate their ef-
fects on the character value as simply the inverse of the effect of a simple expansion.
That is to say that a simple expansion of the leftmost tree decreases j; by 2, a simple
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expansion of the rightmost tree increases j;, by 2 and decreases j; by 1, and all other
basic expansions increase j;_1 by 2 and decrease j; by 2.

All of this allows us to generate a height function j for our character 1. We can
then form Morse functions with these height functions and our function #(x). In
particular, we wish to take the Morse function (j,#(x)) and apply it to the complex
Y = XPk<tO)<PE for p = 4n + 5, following the method of ([Zar17], chapter 6). In
order to apply the Morse lemma and demonstrate connectivity, our goal is to prove
the following lemma.

Lemma 5.2.15. take y a vertex in Y/V)>0. Then the ascending link of y is (n — 1)-connected.

Proof. As in ([Zar17] proposition 6.6), we split this into two cases: p > t(y) > pk
and pk > t(y) < pk?, and first consider the case where p > t(y) > pk. The basic
expansion of the leftmost tree of y changes j;, but our character ¢ is expressed as a
linear combination of », ..., x_1, and so our height function j is a linear combination
of ja, ..., jx—1. As such, j is fixed by the basic expansion of the leftmost tree, and any
basic expansion increases t. Thus the expansion of the leftmost tree is always in the
ascending link. Similarly, the contraction of the k leftmost trees fixes j but reduces
t, so is always in the descending link. As the contraction of the k leftmost trees is
the only basic move that is not disjoint with the expansion of the leftmost tree, the
expansion of the leftmost tree forms a cone point in the ascending link of y. Thus
the ascending link of y is contractible as long as this expansion can be included. This
works whenever p > t(y) > pk as performing all expansions will still remain in Y.

We now consider the case when pk < t(y) < pk®. We first claim that performing
the maximal number of disjoint basic contractions on y will not move us out of Y.
Take g as the number of possible disjoint basic contractions. Each basic contraction
is formed over k trees, so f(y) > gk. If we are able to perform all of these basic
contractions concurrently and remain in Y = XPESH)<PR then for the product v’
of all of these contractions, we must have ¢(y') > p. Each time we perform a basic
contraction, we merge k trees into 1 tree, resulting in a net loss of k — 1 trees. As
such, we can rewrite f(y') as t(y) — g(k — 1). Thus, we wish to demonstrate t(y) —
q(k —1) > p. Suppose ¢ > p. Then we can use the fact that t(y) > gk to say
ty) —q(k—1) > gk —q(k—1) > g > p. Now suppose g < p. In that case t(y) —
q(k—1) > gk — p(k — 1) = p. So in both cases the equation holds.

We wish to construct a large simplex ¢ constructed from disjoint merges that we
can guarantee are in the ascending link. We first exclude the merges on the leftmost
and rightmost k trees. As described at the beginning of this section, the effects of all
other merges on j;(y) is that j; will increase by 2 and j;_; will decrease by 2 for some
1 <1 <k —1, with all other j; fixed by this merge. Also note that this is cyclic, in that
there are merges that increase j; and decrease j;_1. We write our height function j as
j(y) = 0j1(y) + c2j2(y) + ... + ck—1jn—1(y). Due to the redundancy relation between
the basis characters for Fg, We may write any height function j with no j; term, but
we include it here as there are still merges that effect j;. We now wish to find 1 <
s < k —1 such that ¢;_1 < ¢;, again taken cyclically, in that ¢, < ¢ is acceptable.
We know that ¢; = 0. Either there exists c;_1 < ¢;, or thereisachain 0 = ¢; > ¢, >
... > Ck—1. This implies c¢x_1 < 0. If c,_1 = 0, then ¢; = 0 for all ¢; and j is the trivial
height function corresponding to the trivial character, and we need not consider it.
Thus cx_1 < c1 soin all cases we have some ¢;_1 < ¢;. We know that a merge starting
on a leaf numbered I = smod (k — 1) we will reduce j;, by 2, increase j; by 2 and fix
all other j;. As such, one in every k — 1 merges will increase j overall (as the increase
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caused by j; rising is greater than the decrease caused by j;_ falling). However, as
each merge is across k trees, these basic contractions are not disjoint, so we can only
take every other such merge.

We now need to calculate how many basic contractions ¢ contains. In order to
guarantee that we do not include the first tree in any basic contraction, we will
ignore the first k — 1 possible merges. We then add 0 < s —1 < n — 2 such that
we are on the right cycle of merges. We then take a merge every 2(k — 1) trees to
construct our simplex. So our first merge is across the trees in positions s + (k —
1),s+ (k—1)+1,..,s +2(k — 1). In order to avoid our basic contractions hav-
ing an intersection, we then skip a possible merge and perform another merge on
s+3(k—1),s+3(k—1)+1,..,s+4(k—1). We repeat this process until we reach
the final possible merge, which we will say isons+ (v —1)(k—1),s+ (v —1)(k —
1)+1,...,s+v(k—1). In order for this final merge not to include the rightmost tree,
we require that s +v(k— 1) < t —1, and as we have declared that this is the final pos-
sible merge, we have thats + (v +2)(k—1) > t — 1 (otherwise there would be room
for a merge across s + (v+1)(k—1),s+ (v+1)(k—1)+1,...,5s+ (v +2)(k — 1)).
We have that t > pk and s < k — 2, so we can say

k=2+@w+2)(k—1)>s+(v+2)(k—1)>t—1>pk—1
(v+2)(k—1)>pk—1—k+2
v(k—1)+2(k—1)> (p—1)k+1 (55)
o(k—1)>(p—1)k+1—-2k+2
v>(p 3)k+3
- k—1

as we require v to be an integer, we will take the floor and say v > L%j . We can

then substitute in our value p = 4n + 5 in order to get that v > L%J > 4n+ 2.
As we are taking every other possible merge to construct our simplex, we can say
that the number of vertices in our simplex is 5 or just 2n + 2, making it a 2n — 1-
simplex.

Finally, we wish to use this simplex to demonstrate the connectivity of the entire
ascending link. In order to do this, we will need to borrow another result from
Zaremsky:.

Definition 5.2.16. ([Zar17], definition 6.4) Let A be a simplicial complex. two sim-
plices p1,rho, € A are joinable to each other if there exists a simplex p such that
p1,02 € p. For a given simplex o € A, we say that A is flag with respect to ¢ if when-
ever we have a simplex p and ¢’ a face of ¢ such that every vertex of p is joinable to
every vertex of ¢’, then we have that p is joinable to ¢’.

A useful fact that Zaremsky states in this definition is that a simplicial complex that
is flag with respect to all its simplices, then it is flag.

Citation 5.2.17. ([Zar17], Lemma 6.5) Let A be a simplicial complex and let k € IN. Sup-
pose there exists an I-simplex o such that A is flag with respect to o. Further suppose that
for all vertices v € A, v is joinable to some (I — k) face of o. Then Ais (| +] — 1) connected.
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In order to apply 5.2.16 to the ascending link of y, we first have to demonstrate that
the ascending link is flag with respect to c. Were we working in X and not Y, we
would have that the complex is already flag (as the 1-skeleton of an i simplex would
imply i pairwise disjoint basic moves, and if they are pairwise disjoint then they
can all be performed sequentially in any order. As such, the i simplex implied by
the 1-skeleton exists). We consider a simplex p in the ascending link of y joinable to
some face of ¢, label ¢’. All vertices of ¢, and by extension ¢’, are basic contractions.
Hence, as long as each y’ reached from a move in p is still in y, then any i’ reached
from a move in p x ¢’ cannot have t(y') > pk?, as moves in ¢’ can only reduce #, and
cannot have t(y’) < pk, as performing all disjoint contractions on any vertex y such
that pk < t(y) < pk? does not cause you to leave Y, as discussed at the beginning of
this section. As such, as long as the basic moves of p do not leave Y, then the whole
simplex of p x ¢’ from the ascending link of y in X is in the ascending link of y in Y,
and so the ascending link of y is flag with respect to ¢

Our next goal is to show that all vertices v in the ascending link of y are joinable
to at least all but 2 of the vertices of ¢. This is relatively straightforward. There
are two possibilities for vertices in the ascending link of y, they can either be basic
expansions of a single tree or basic contractions of a set of k consecutive trees. If v
is a basic expansion, then it can only overlap with a single basic contraction in o,
as the basic contractions of ¢ are all disjoint. Now suppose v is a basic contraction.
There is a gap of k — 2 trees between each basic contraction in ¢. As such, it is
possible for a basic contraction to contain one tree from one contraction of ¢, one
tree from a consecutive contraction, and the k — 2 trees in between, thus intersecting
with exactly 2 basic contractions in . As such, every vertex in the ascending link of
y is adjacent to at least all but two vertices in ¢. This implies each vertex is joinable
to some 2n — 3 face of ¢ (recall that ¢ is a 2n — 1-simplex). We may now apply 5.2.16
to conclude that the ascending link of y is (| % | — 1)-connected, and as such is n — 1
connected, as required. O
Finally, we consider characters x of the form x = axo + bx1 + Zi:llcil[]i, where at
least one of 2 and b and at least one of the c; are non-zero. Instead of calculating this
directly, we instead wish to reduce this case to the case for i = Z;‘;llcilpi.

Lemma 5.2.18. Suppose that ¢ = Z’f_zlcitpi € X®(Fg) for all . Then for any x =

1=

axo+ ¢ +bxi, x € Z*(Fg) For any .

Proof. We begin by restricting x to Fg[1]. As Fg[1] contains no xq or y generators, we
have that x/|g 51] is just ¢ + by1. We then use the y-symmetry automorphism to map
XIE 51 to X' such that ' = axo + ¢’ where ¢ is nontrivial (though this automorphism
takes us out of Fg[1]). We can then restrict ' to Fg[1], and X,|Fﬁ[1] is just ¢’. By
assumption, ' € L°(Fz[1]), as it is isomorphic to Fg. We can then apply 5.1.7 to
show that x’ € X(Kg[1]), where Fg[1] 2O Kg[1] = (x1, x2, Y2, X3, y3...) is the equivalent
subset to Kg inside Fg[1]. As Kg[1] is finite index in Fg[1], we can apply 1.4.1 in
order to show x' € X*(Fg). We then apply y-symmetry to show that x|g,[ is in
Y*(Fg[1]). Finally, we repeat the previous process again, using 5.1.7 and 1.4.1 to

show x € X (Fp). O
We can now close this section with the statement of the theorem.

Theorem 5.2.19. Suppose Fg is a Bieri-Strebel group with corresponding subdivision poly-
nomial of the form x> + bx — 1. Then the BNSR invariant is of the following form.
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The character space has a basis of a + b — 1 independent characters. xo and x1 corre-
spond to the log (base B of the slope at 0 and 1 respectively. {; }o<i<q+p—1 are each the
sum of difference of the log of the slope to the left and right of each brakepoint, summed
over all breakpoints in the ith orbit of breakpoints.

The character classes [—xo] and [—x1] are not in X1 (Fg).
Characters of the form axo + bx1;a,b < 0 are in £!(Fg), but not £ (Fg).

all other characters are in X (Fp).

Proof. Point (1) was proven in section 5.2.1, point (2) is the lemma 5.2.7, point (3)
is the lemma 5.2.11, and point (4) is reached by combining the lemmas 5.2.9, 5.2.14
and 5.2.18. 0

We shall also state a generalisation of this theorem as a conjecture

Conjecture 5.2.20. 5.2.19 holds for all Bieri-Strebel groups with quadratic subdivision poly-
nomial and well-defined tree-pair representation. That is to say, all Bieri-Strebel groups with
subdivision polynomial ax?+bx—1,a <b.
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